Abstract

The traveling and standing flexural waves in the microbeam are studied based on the fraction-order nonlocal strain gradient elasticity in the present paper. First, the Hamilton’s variational principle is used to derive the governing equations and the boundary conditions with consideration of both the nonlocal effects and the strain gradient effects. The fraction-order derivative instead of the integer-order derivative is introduced to make the constitutive model more flexible while the integer-order constitutive model can be recovered as a special case. Then, the Euler–Bernoulli beam and the Timoshenko beam are both considered, and the corresponding formulations are derived. Two problems are investigated: (1) the dispersion of traveling flexural waves and the attenuation of the standing waves in the infinite beam and (2) the natural frequency of finite beam. The numerical examples are provided, and the effects of the nonlocal and the strain gradient effects are discussed. The influences of the fraction-order parameters on the wave motion and vibration behavior are mainly studied. It is found that the strain gradient effects and the nonlocal effect have opposite influences on the wave motion and vibration behavior. The fraction order also has evident influence on the wave motion and vibration behavior and thus can refine the prediction of the model.

References

1.
Craighead
,
H. G.
,
2000
, “
Nanoelectromechanical Systems
,”
Science
,
290
(
5496
), pp.
1532
1535
.
2.
Ekinci
,
K. L.
, and
Roukes
,
M. L.
,
2005
, “
Nanoelectromechanical Systems
,”
Rev. Sci. Instrum.
,
76
(
6
), pp.
061
101
.
3.
Eringen
,
A. C.
,
1972
, “
Linear Theory of Nonlocal Elasticity and Dispersion of Plane Waves
,”
Int. J. Eng. Sci.
,
10
(
5
), pp.
425
435
.
4.
Eringen
,
A. C.
,
1983
, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
(
9
), pp.
4703
4710
.
5.
Mindlin
,
R. D.
,
1964
, “
Micro-Structure in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
16
(
1
), pp.
51
78
.
6.
Mindlin
,
R.
,
1965
, “
Second Gradient of Strain and Surface-Tension in Linear Elasticity
,”
Int. J. Solids Struct.
,
1
(
4
), pp.
414
438
.
7.
Huang
,
Z.
,
2006
, “
Formulations of Nonlocal Continuum Mechanics Based on a New Definition of Stress Tensor
,”
Acta Mech.
,
187
(
1–4
), pp.
11
27
.
8.
Barati
,
M. R.
,
Faleh
,
N. M.
, and
Zenkour
,
A. M.
,
2019
, “
Dynamic Response of Nanobeams Subjected to Moving Nanoparticles and Hygro-Thermal Environments Based on Nonlocal Strain Gradient Theory
,”
Mech. Adv. Mater. Struc.
,
26
(
19
), pp.
1661
1669
.
9.
Li
,
Y. S.
,
Ma
,
P.
, and
Wang
,
W.
,
2016
, “
Bending, Buckling, and Free Vibration of Magnetoelectroelastic Nanobeam Based on Nonlocal Theory
,”
J. Intell. Mater. Syst. Struct.
,
27
(
9
), pp.
1139
1149
.
10.
Nejad
,
M. Z.
, and
Hadi
,
A.
,
2016a
, “
Non-Local Analysis of Free Vibration of Bi-directional Functionally Graded Euler-Bernoulli Nano-beams
,”
Int. J. Eng. Sci.
,
105
, pp.
1
11
.
11.
Rahmani
,
O.
, and
Pedram
,
O.
,
2014
, “
Analysis and Modeling the Size Effect on Vibration of Functionally Graded Nanobeams Based on Nonlocal Timoshenko Beam Theory
,”
Int. J. Eng. Sci.
,
77
, pp.
55
70
.
12.
Karami
,
B.
,
Shahsavari
,
D.
, and
Janghorban
,
M.
,
2018
, “
Wave Propagation Analysis in Functionally Graded (FG) Nanoplates Under In-Plane Magnetic Field Based on Nonlocal Strain Gradient Theory and Four Variable Refined Plate Theory
,”
Mech. Adv. Mater. Struc.
,
25
(
12
), pp.
1047
1057
.
13.
Lam
,
D. C. C.
,
Yang
,
F.
,
Chong
,
A. C. M.
,
Wang
J.
, and
Tong
P.
,
2003
, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Solids
,
51
(
8
), pp.
1477
1508
.
14.
Rajasekaran
,
S.
, and
Khaniki
,
H. B.
,
2019
, “
Finite Element Static and Dynamic Analysis of Axially Functionally Graded Nonuniform Small-Scale Beams Based on Nonlocal Strain Gradient Theory
,”
Mech. Adv. Mater. Struc.
,
26
(
14
), pp.
1245
1259
.
15.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
,
33
, pp.
295
361
.
16.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
2001
, “
A Reformulation of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
49
(
10
), pp.
2245
2271
.
17.
Gourgiotis
,
P. A.
,
Georgiadis
,
H. G.
, and
Neocleous
,
I.
,
2013
, “
On the Reflection of Waves in Half-Spaces of Microstructured Materials Governed by Dipolar Gradient Elasticity
,”
Wave Motion
,
50
(
3
), pp.
437
455
.
18.
Li
,
Y. Q.
, and
Wei
,
P. J.
,
2015
, “
Reflection and Transmission of Plane Wave at the Interface Between Two Different Dipolar Gradient Elastic Half-Spaces
,”
Int. J. Solids Struct.
,
56–57
, pp.
194
208
.
19.
Li
,
Y. Q.
, and
Wei
,
P. J.
,
2016a
, “
Reflection and Transmission Through a Microstructured Slab Sandwiched by Two Half-Spaces
,”
Eur. J. Mech. A. Solids
,
57
, pp.
1
17
.
20.
Li
,
Y. Q.
,
Wei
,
P. J.
, and
Zhou
,
Y. H.
,
2016b
, “
Band Gaps of Elastic Waves in 1-D Phononic Crystal With Dipolar Gradient Elasticity
,”
Acta Mech.
,
227
(
4
), pp.
1005
1023
.
21.
Li
,
Y. Q.
, and
Wei
,
P. J.
,
2018
, “
Reflection and Transmission of Thermo-Elastic Waves Without Energy Dissipation at the Interface of Two Dipolar Gradient Elastic Solids
,”
J. Acoust. Soc. Am.
,
143
(
1
), pp.
550
562
.
22.
Yang
,
F.
,
Chong
,
A. C. M.
, and
Lam
,
D. C. C.
,
2002
, “
Couple Stress Based Strain Gradient Theory for Elasticity
,”
Int. J. Solids Struct.
,
6
(
10
), pp.
285
296
.
23.
Ebrahimi
,
F.
, and
Barati
,
M. R.
,
2019
, “
Vibration Analysis of Biaxially Compressed Double-Layered Graphene Sheets Based on Nonlocal Strain Gradient Theory
,”
Mech. Adv. Mater. Struc.
,
26
(
10
), pp.
854
865
.
24.
Al-Basyouni
,
K. S.
,
Tounsi
,
A.
, and
Mahmoud
,
S. R.
,
2015
, “
Size Dependent Bending and Vibration Analysis of Functionally Graded Micro Beams Based on Modified Couple Stress Theory and Neutral Surface Position
,”
Compos. Struct.
,
125
, pp.
621
630
.
25.
Ansari
,
R.
,
Gholami
,
R.
,
Shojaei
,
M. F.
,
Mohammadi
,
V.
, and
Sahmani
,
S.
,
2013
, “
Size-Dependent Bending, Buckling and Free Vibration of Functionally Graded Timoshenko Microbeams Based on the Most General Strain Gradient Theory
,”
Compos. Struct.
,
100
, pp.
385
397
.
26.
Ghayesh
,
M. H.
, and
Farajpour
,
A.
,
2020
, “
Nonlinear Coupled Mechanics of Nanotubes Incorporating Both Nonlocal and Strain Gradient Effects
,”
Mech. Adv. Mater. Struc.
,
27
(
5
), pp.
373
382
.
27.
Kong
,
S.
,
Zhou
,
S.
,
Nie
,
Z.
, and
Wang
,
K.
,
2009
, “
Static and Dynamic Analysis of Micro Beams Based on Strain Gradient Elasticity Theory
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
487
498
.
28.
Li
,
Y. S.
,
Feng
,
W. J.
, and
Cai
,
Z. Y.
,
2014
, “
Bending and Free Vibration of Functionally Graded Piezoelectric Beam Based on Modified Strain Gradient Theory
,”
Compos. Struct.
,
115
, pp.
41
50
.
29.
Wang
,
B.
,
Zhao
,
J.
, and
Zhou
,
S.
,
2010
, “
A Micro Scale Timoshenko Beam Model Based on Strain Gradient Elasticity Theory
,”
Eur. J. Mech. A. Solids
,
29
(
4
), pp.
591
599
.
30.
Zhang
,
Q. Z.
,
Zhang
,
Q.
, and
Ji
,
M.
,
2019
, “
Dynamic Mechanical Properties of Soil Based on Fractional-Order Differential Theory
,”
Soil Mech. Found. Eng.
,
55
(
6
), pp.
366
373
.
31.
Carpinteri
,
A.
,
Cornetti
,
P.
, and
Sapora
,
A.
,
2011
, “
A Fractional Calculus Approach to Nonlocal Elasticity
,”
Eur. Phys. J.: Spec. Top.
,
193
(
1
), pp.
193
204
.
32.
Rahimi
,
Z.
,
Rezazadeh
,
G.
, and
Sumelka
,
W.
,
2019
, “
A Non-local Fractional Stress-Strain Gradient Theory
,”
Int. J. Mech. Mater. Des.
,
16
(
2
), pp.
265
278
.
33.
Rahimi
,
Z.
,
Rezazadeh
,
G.
,
Sumelka
,
W.
, and
Yang
,
X. J.
,
2017
, “
A Study of Critical Point Instability of Micro and Nano Beams Under a Distributed Variable-Pressure Force in the Framework of the Inhomogeneous Non-linear Non-local Theory
,”
Arch. Mech.
,
69
(
6
), pp.
413
433
.
34.
Rahimi
,
Z.
,
Sumelka
,
W.
, and
Yang
,
X. J.
,
2017
, “
Linear and Non-linear Free Vibration of Nano Beams Based on a New Fractional Nonlocal Theory
,”
Eng. Computation.
,
34
(
5
), pp.
1754
1770
.
35.
Challamel
,
N.
,
Zorica
,
D.
,
Atanackovic
,
T. M.
, and
Spasic
,
D. T.
,
2013
, “
On the Fractional Generalization of Eringen’s Nonlocal Elasticity for Wave Propagation
,”
C.R. Mec.
,
341
(
3
), pp.
298
303
.
36.
Li
,
L.
,
Lin
,
R.
, and
Ng
,
T. Y.
,
2020
, “
A Fractional Nonlocal Time-Space Viscoelasticity Theory and Its Applications in Structural Dynamics
,”
Appl. Math. Model.
,
84
, pp.
116
136
.
37.
Kang
,
Y.
,
Wei
,
P.
,
Li
,
Y.
, and
Zhang
,
P.
,
2021
, “
Modeling Elastic Wave Propagation Through a Partially Saturated Poroviscoelastic Interlayer by Fractional Order Derivatives
,”
Appl. Math. Model.
,
100
, pp.
612
631
.
38.
Huang
,
Y.
,
Wei
,
P.
,
Xu
,
Y.
, and
Li
,
Y.
,
2021
, “
Modelling Flexural Wave Propagation by the Nonlocal Strain Gradient Elasticity With Fractional Derivatives
,”
Math. Mech. Solids
,
26
(
10
), pp.
1538
1562
.
39.
Moallem
,
M.
,
2008
, “
Modeling and Control of Torsional Beam Vibrations: A Wave-Based Approach
,”
ASME J. Vib. Acoust.
,
130
(
2
), p.
021014
.
40.
Zargarani
,
A.
, and
Mahmoodi
,
S. N.
, “
Flexural-torsional Free Vibration Analysis of a Double-Cantilever Structure
,”
ASME J. Vib. Acoust.
,
144
(
3
), p.
031001
.
41.
Lim
,
C. W.
,
Zhang
,
G.
, and
Reddy
,
J. N.
,
2015
, “
A Higher-Order Nonlocal Elasticity and Strain Gradient Theory and Its Applications in Wave Propagation
,”
J. Mech. Phys. Solids
,
78
, pp.
298
313
.
You do not currently have access to this content.