Abstract

Recent developments in timing belt drive for the automotive engine have seen the use of non-circular pulleys. This study presents an experimental and numerical investigation on this type of transmission including an oval pulley. A specific test rig has been designed to enable the identification of the proper effect of an oval pulley on the transmission dynamics. The belt tensions, the speeds, and torques of the driving and driven pulleys were measured and analyzed for three different transmission configurations: (1) circular driving pulley and oval driving pulley without (2) and/or with (3) load torque applied. Analyses were carried out in the time and frequency domains by considering the driving pulley rotation angle as a reference. In parallel a numerical model has been developed, it accounts for the specific motions of the belt seating/unseating points on the oval pulley and its neighboring pulleys. The model considers the variation of lengths for the belt spans adjacent to the oval pulley. This induces variable longitudinal stiffness and influences the transmission dynamics that is predicted versus time and compared with experiments. The phasing angle of the oval driving pulley was adjustable in order to study its influence. With no resistant torque applied, it was found that, for low-speeds, the oval pulley has a pure kinematic effect on the transmission dynamics. When a load torque is applied, the effectiveness of the oval pulley regarding the belt tensions and transmission error fluctuations is verified experimentally for some specific intervals of the phasing angle.

References

1.
Ligier
,
L.
, and
Baron
,
E.
,
2002
,
Acyclisme et Vibrations
,
Editions Technip
,
Paris, France
, pp.
875
.
2.
Hwang
,
S.
,
Perkins
,
N. C.
,
Ulsoy
,
A. G.
, and
Meckstroth
,
R. J.
,
1994
, “
Rotational Response and Slip Prediction of Serpentine Belt Drive Systems
,”
ASME J. Vib. Acoust.
,
116
(
1
), pp.
71
78
. 10.1115/1.2930400
3.
Parker
,
R. G.
,
2004
, “
Efficient Eigensolution, Dynamic Response, and Eigen Sensitivity of Serpentine Belt Drives
,”
J. Sound Vib.
,
270
(
1–2
), pp.
15
38
. 10.1016/S0022-460X(03)00259-1
4.
Kraver
,
T. C.
,
Fan
,
G. W.
, and
Shah
,
J. J.
,
1996
, “
Complex Modal Analysis of a Flat Belt Pulley System With Belt Damping and Coulomb-Damped Tensioner
,”
ASME J. Mech. Des.
,
118
(
2
), pp.
306
311
. 10.1115/1.2826885
5.
Barker
,
C. R.
, and
Yang
,
Y. L.
,
1989
, “
Dynamic Analysis of an Automotive Belt Drive System
,”
Proceedings of The First International Applied Mechanical Systems Design Conference (IAMSDC-1)
,
Nashville, TN
,
June 11–14
, pp.
75.1
75.10
.
6.
Childs
,
T. H. C.
,
Parker
,
I. K.
,
Day
,
A. J.
,
Coutzoucos
,
A.
, and
Dalgarno
,
K. W.
,
1991
, “
Paper XII (ii) Tooth Loading and Life of Automotive Timing Belt
,”
Tribol. Ser.
,
18
, pp.
341
348
. 10.1016/S0167-8922(08)70150-0
7.
Iizuka
,
H.
,
Gerbert
,
G.
, and
Childs
,
T. H. C.
,
1999
, “
Fatigue Damage Prediction in Synchronous Belts
,”
ASME J. Mech. Des.
,
121
(
2
), pp.
280
288
. 10.1115/1.2829455
8.
Takahashi
,
H.
, and
Iizuka
,
H.
,
2003
, “
Fatigue Failure Mechanism of Steel Cords in Synchronous Belt
,”
Proceedings of the IDETC
, pp.
155
161
.
Paper No. DETC2003/PTG-48020
.
9.
Mockensturm
,
E. M.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Stability and Limit Cycles of Parametrically Excited, Axially Moving Strings
,”
ASME J. Vib. Acoust.
,
118
(
3
), pp.
346
351
. 10.1115/1.2888189
10.
Parker
,
R. G.
, and
Lin
,
Y.
,
2001
, “
Parametric Instability of Axially Moving Media Subjected to Multifrequency Tension and Speed Fluctuations
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
49
57
. 10.1115/1.1343914
11.
Michon
,
G.
,
Manin
,
L.
,
Remond
,
D.
,
Dufour
,
R.
, and
Parker
,
R. G.
,
2008
, “
Parametric Instability of an Axially Moving Belt Subjected to Multifrequency Excitations: Experiments and Analytical Validation
,”
ASME J. Appl. Mech.
,
75
(
4
), p.
041004
. 10.1115/1.2910891
12.
Kong
,
L.
, and
Parker
,
R. G.
,
2004
, “
Coupled Belt-Pulley Vibration in Serpentine Drives With Belt Bending Stiffness
,”
ASME J. Appl. Mech.
,
71
(
1
), pp.
109
119
. 10.1115/1.1641064
13.
Beikmann
,
R. S.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Nonlinear Coupled Vibration Response of Serpentine Belt Drive Systems
,”
ASME J. Vib. Acoust.
,
118
(
4
), pp.
567
574
. 10.1115/1.2888336
14.
Zhu
,
H.
,
Hu
,
Y.
, and
Zhu
,
W. D.
,
2018
, “
Dynamic Response of a Front End Accessory Drive System and Parameter Optimization for Vibration Reduction via a Genetic Algorithm
,”
J. Vib. Control
,
24
(
11
), pp.
2201
2220
. 10.1177/1077546316680543
15.
Zhu
,
H.
,
Hu
,
Y.
,
Zhu
,
W.
, and
Long
,
H.
,
2018
, “
Dynamic Responses of an Engine Front-End Accessory Belt Drive System With Pulley Eccentricities via Two Spatial Discretization Methods
,”
Proc. Inst. Mech. Eng., Part D
,
232
(
4
), pp.
482
498
. 10.1177/0954407017703231
16.
Michon
,
G.
,
Manin
,
L.
, and
Dufour
,
R.
,
2005
, “
Hysteretic Behavior of a Belt Tensioner: Modeling and Experimental Investigation
,”
J. Vib. Control
,
11
(
9
), pp.
1147
1158
. 10.1177/1077546305055539
17.
Zhu
,
H.
,
Hu
,
Y.
,
Pi
,
Y.
, and
Zhu
,
W.
,
2019
, “
Hysteretic Damping Characteristics of a Mechanical Tensioner: Modeling and Experimental Investigation
,”
Proc. Inst. Mech. Eng., Part D
,
233
(
7
), pp.
1890
1902
. 10.1177/0954407018792666
18.
Ding
,
H.
, and
Zhu
,
J. W.
,
2013
, “
Effect of One-Way Clutch on the Nonlinear Vibration of Belt-Drive System With a Continuous Belt Model
,”
J. Sound Vib.
,
332
(
24
), pp.
6472
6487
. 10.1016/j.jsv.2013.07.009
19.
Innocenti
,
C.
, and
Paganelli
,
D.
,
2008
, “
Designing Synchronous Belt Transmissions With Variable Velocity Ratio
,”
ASME J. Mech. Des.
,
130
(
1
), p.
011009
. 10.1115/1.2803657
20.
Zheng
,
E.
,
Jia
,
F.
,
Sha
,
H.
, and
Wang
,
S.
,
2012
, “
Non-Circular Belt Transmission Design of Mechanical Press
,”
Mech. Mach. Theory
,
57
, pp.
126
138
. 10.1016/j.mechmachtheory.2012.07.004
21.
Kim
,
B.
, and
Deshpande
,
A. D.
,
2014
, “
Design of Nonlinear Rotational Stiffness Using a Noncircular Pulley-Spring Mechanism
,”
ASME J. Mech. Robot.
,
6
(
4
), p.
041009
. 10.1115/1.4027513
22.
Gajewski
,
W.
,
2006
,
Synchronous Drive Apparatus With Non-Circular Drive Elements, Europe Patent 1448916B1
.
23.
Zhu
,
H.
,
Hu
,
Y.
,
Pi
,
Y.
,
Zhu
,
W.
, and
Wang
,
X.
,
2018
, “
Periodic Response of a Timing Belt Drive System With an Oval Cogged Pulley and Optimal Design of the Pitch Profile for Vibration Reduction
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
1
), p.
011014
. 10.1115/1.4037764
24.
Wang
,
X. F.
, and
Zhu
,
W. D.
,
2017
, “
Dynamic Analysis of an Automotive Belt-Drive System With a Noncircular Sprocket by a Modified Incremental Harmonic Balance Method
,”
ASME J. Vib. Acoust.
,
139
(
1
), p.
011009
. 10.1115/1.4034250
25.
Remond
,
D.
,
1998
, “
Practical Performances of High-Speed Measurement of Gear Transmission Error or Torsional Vibrations With Optical Encoders
,”
Meas. Sci. Technol.
,
9
(
3
), pp.
347
353
. 10.1088/0957-0233/9/3/006
26.
Makita
,
K.
,
Kagotani
,
M.
,
Ueda
,
H.
, and
Koyama
,
T.
,
2003
, “
Influence of Idler on Transmission Error in Synchronous Belt Drives (Under Transmission Force)
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
404
410
. 10.1115/1.1564072
27.
Manin
,
L.
,
Michon
,
G.
,
Rémond
,
D.
, and
Dufour
,
R.
,
2009
, “
From Transmission Error Measurement to Pulley–Belt Slip Determination in Serpentine Belt Drives: Influence of Tensioner and Belt Characteristics
,”
Mech. Mach. Theory
,
44
(
4
), pp.
813
821
. 10.1016/j.mechmachtheory.2008.04.003
28.
Long
,
S.
,
Zhao
,
X.
,
Shangguan
,
W.-B.
, and
Zhu
,
W.
,
2020
, “
Modeling and Validation of Dynamic Performances of Timing Belt Driving Systems
,”
Mech. Syst. Signal Process
,
144
, p.
106910
. 10.1016/j.ymssp.2020.106910
29.
Barber
,
C. B.
,
Dobkin
,
D. P.
, and
Huhdanpaa
,
H. T.
,
1996
, “
The Quickhull Algorithm for Convex Hulls
,”
ACM Trans. Math. Softw.
,
22
(
4
), pp.
469
483
. 10.1145/235815.235821
30.
Cepon
,
G.
,
Manin
,
L.
, and
Boltezar
,
M.
,
2009
, “
Introduction of Damping Into the Flexible Multibody Belt-Drive Model: A Numerical and Experimental Investigation
,”
J. Sound Vib.
,
324
(
1–2
), pp.
283
296
. 10.1016/j.jsv.2009.02.001
31.
Passos
,
S.
,
Manin
,
L.
,
Sauvage
,
O.
,
Rota
,
L.
,
Delattre
,
B.
, and
Remond
,
D.
,
2018
, “
Investigation on the Timing Belt Drive With a Non-Circular Pulley
,”
International Gear Conference
,
Lyon, France
,
Aug. 27–29
,
Chartridge Books
,
Oxford
, pp.
1186
1198
.
You do not currently have access to this content.