Abstract

Lock-in flow tones can occur for many different types of flow instabilities and structural-acoustic resonators at low Mach number. This paper examines the interaction between a shear layer instability generated by flow over a shallow cavity and the modes of an elastic cantilevered beam containing the cavity. A describing function model indicates that a cavity shear layer instability capable of producing lock-in with acoustic pipe resonances cannot achieve lock-in with equivalent structural beam resonances, particularly resonances of submerged structures. Fluid-elastic cavity lock-in is unlikely to occur due to the high level of damping that exists for a submerged structure, the high fluid-loaded modal mass, and the relatively weak source strength a cavity generates. Limited experimentation using pressure, acceleration, and particle image velocimetry (PIV) measurements has been performed which are consistent with the describing function model. A stronger source produced by a larger scale flow instability—separated flow over a bluff body—was able to lock-in with modes of the same submerged structure, further demonstrating that the concern for lock-in from a cavity shear layer instability is isolated to systems capable of stronger coupling or those dominated by fluid-acoustic resonances.

References

1.
Rockwell
,
D.
, and
Naudascher
,
E.
,
1978
, “
Review—Self-Sustaining Oscillations of Flow Past Cavities
,”
ASME J. Fluids Eng.
,
100
, pp.
152
165
. 10.1115/1.3448624
2.
Blake
,
W. K.
,
1986
,
Mechanics of Flow Induced Sound and Vibration
, Vols.
1
and
2
,
Academic Press, Inc
,
New York
.
3.
Naudascher
,
E.
, and
Rockwell
,
D.
,
1994
,
Flow-Induced Vibrations
,
IAHR/AIRH
,
London
.
4.
Rockwell
,
D.
,
Lin
,
J.-C.
,
Oshkai
,
P.
,
Reiss
,
M.
, and
Pollack
,
M.
,
2003
, “
Shallow Cavity Flow Tone Experiments: Onset of Locked-On States
,”
J. Fluids Struct.
,
17
(
3
), pp.
381
414
. 10.1016/S0889-9746(02)00141-X
5.
Dunham
,
W. H.
,
1962
, “
Flow-Induced Cavity Resonance in Viscous Compressible and Incompressible Fluids
,”
Report ARC-73, Fourth Symposium on Naval Hydrodynamics
,
Washington, DC
,
ONR
, pp.
1057
1081
.
6.
Harrington
,
M. C.
, and
Dunham
,
W. H.
,
1960
, “
Studies of the Mechanism for Flow-Induced Cavity Resonances
,”
J. Acoust. Soc. Am.
,
32
, pp.
921
. 10.1121/1.1936469
7.
Yang
,
Y.
,
Rockwell
,
D.
,
Lai-Fook Cody
,
K.
, and
Pollack
,
M.
,
2009
, “
Generation of Tones Due to Flow Past a Deep Cavity: Effect of Streamwise Length
,”
J. Fluids Struct.
,
25
(
2
), pp.
364
388
. 10.1016/j.jfluidstructs.2008.05.003
8.
Ziada
,
S.
, and
Buhlmann
,
E. T.
,
1992
, “
Self-Excited Resonances of Two Side-Branches in Close Proximity
,”
J. Fluids Struct.
,
6
(
5
), pp.
583
601
. 10.1016/0889-9746(92)90020-4
9.
Ziada
,
S.
, and
Lafon
,
P.
,
2014
, “
Flow-Excited Acoustic Resonance Excitation Mechanism, Design Guidelines, and Counter Measures
,”
ASME Appl. Mech. Rev.
,
66
(
1
), pp.
1
22
. 10.1115/1.4025788
10.
Cremer
,
L.
, and
Ising
,
H.
,
1968
, “
Die Selbsterregten Schwingungen von Orgelpfeifen
,”
Acustica
,
19
, pp.
143
153
.
11.
Elder
,
S. A.
,
1978
, “
Self-Excited Depth-Mode Resonances for a Wall-Mounted Cavity in Turbulent Flow
,”
J. Acoust. Soc. Am.
,
64
, pp.
877
890
. 10.1121/1.382047
12.
Elder
,
S. A.
,
Farabee
,
T. M.
, and
DeMetz
,
F. C.
,
1982
, “
Mechanisms of Flow-Excited Cavity Tones at Low Mach Number
,”
J. Acoust. Soc. Am.
,
72
, pp.
532
549
. 10.1121/1.388034
13.
Kook
,
H.
, and
Mongeau
,
L.
,
2002
, “
Analysis of the Periodic Pressure Fluctuations Induced Flow Over a Cavity
,”
J. Sound Vib.
,
251
(
5
), pp.
823
846
. 10.1006/jsvi.2001.4013
14.
Mast
,
T. D.
, and
Pierce
,
A. D.
,
1995
, “
Describing-Function Theory for Flow Excitation of Resonators
,”
J. Acoust. Soc. Am.
,
97
, pp.
163
172
. 10.1121/1.412301
15.
Ma
,
R.
,
Slaboch
,
P. E.
, and
Morris
,
S. C.
,
2009
, “
Fluid Mechanics of the Flow-Excited Helmholtz Resonator
,”
J. Fluid Mech.
,
623
, pp.
1
26
. 10.1017/S0022112008003911
16.
Stephens
,
D. B.
,
Verdugo
,
F. R.
, and
Bennett
,
G. J.
,
2014
, “
Shear Layer Driven Acoustic Modes in a Cylindrical Cavity
,”
ASME J. Pressure Vessel Technol.
,
136
(
5
), pp.
1
8
. 10.1115/1.4026866
17.
Dai
,
X.
,
Jing
,
X.
, and
Sun
,
X.
,
2012
, “
Discrete Vortex Model of a Helmholtz Resonator Subjected to High-Intensity Sound and Grazing Flow
,”
J. Acoust. Soc. Am.
,
132
(
5
), pp.
2988
2996
. 10.1121/1.4757736
18.
Powell
,
A.
,
1961
, “
On the Edge-Tone
,”
J. Acoust. Soc. Am.
,
33
(
4
), pp.
395
409
. 10.1121/1.1908677
19.
Slotine
,
J. J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
20.
Blackstock
,
D. T.
,
2000
,
Fundamentals of Physical Acoustics
,
Wiley-Interscience
,
New York
.
21.
Cody
,
K. L.
,
2008
, “
Factors That Influence the Lock-In of Flow Instabilities With Structural-Acoustic Systems
,” Ph.D. Dissertation,
Pennsylvania State University
,
State College, PA
.
22.
Blevins
,
R. D.
,
1990
,
Flow-Induced Vibration
, 2nd ed.,
Van Nostrand Reinhold
,
New York
.
23.
Oshkai
,
P.
,
Geveci
,
M.
,
Rockwell
,
D.
, and
Pollack
,
M.
,
2005
, “
Imaging of Acoustically Coupled Oscillations Due to Flow Past a Shallow Cavity: Effect of Cavity Length Scale
,”
J. Fluids Struct.
,
20
(
2
), pp.
277
308
. 10.1016/j.jfluidstructs.2004.10.010
24.
Coltman
,
J. W.
,
1968
, “
Sounding Mechanism of the Flute and Organ Pipe
,”
J. Acoust. Soc. Am.
,
44
(
4
), pp.
983
992
. 10.1121/1.1911240
25.
Ross
,
D.
,
1976
,
Mechanics of Underwater Noise
,
Peninsula Publishing
,
Los Altos, CA
.
26.
Blake
,
W. K.
, and
Maga
,
L. J.
,
1975
, “
On the Flow-Excited Vibrations of Cantilevers Struts in Water. I. Flow-Induced Damping and Vibration
,”
J. Acoust. Soc. Am.
,
57
(
3
), pp.
610
625
. 10.1121/1.380477
27.
Cody
,
K. L.
,
Hambric
,
S. A.
, and
Pollack
,
M. L.
,
2005
, “
Challenges of Investigating Fluid-Elastic Lock-In of a Shallow Cavity and a Cantilevered Beam at Low Mach Numbers
,”
ASME Proceedings of IMECE-05
,
Orlando, FL
,
Nov. 5–11
, pp.
253
261
.
28.
Cody
,
K. L.
,
Hambric
,
S. A.
,
Pollack
,
M. L.
, and
Jonson
,
M. L.
,
2008
, “
The Influence of Flow Instability on the Lock-In of Distributed Elastic Resonators
,”
ASME Proceedings of 2008 Noise Control and Acoustics Division Conference
,
Dearborn, MI
,
July 28–30
, pp. 17–29.
29.
Howe
,
M. S.
,
1998
,
Acoustics of Fluid–Structure Interactions
,
Cambridge University Press
,
Cambridge
.
30.
Nelson
,
P. A.
,
Halliwell
,
N. A.
, and
Doak
,
P. E.
,
1981
, “
Fluid Dynamics of a Flow Excited Resonance, Part I: Experiment
,”
J. Sound Vib.
,
78
(
1
), pp.
15
38
. 10.1016/S0022-460X(81)80156-3
31.
Nelson
,
P. A.
,
Halliwell
,
N. A.
, and
Doak
,
P. E.
,
1983
, “
Fluid Dynamics of a Flow Excited Resonance, Part II: Flow Acoustic Interaction
,”
J. Sound Vib.
,
91
(
3
), pp.
375
402
. 10.1016/0022-460X(83)90287-0
32.
Blake
,
W. K.
,
Maga
,
L. J.
, and
Finkelstein
,
G.
,
1977
, “
Hydroelastic Variables Influencing Propeller and Hydrofoil Singing
,”
ASME Winter Annual Meeting, Fluids Engineering Division
,
Atlanta, GA
,
Nov. 27– Dec. 2
, pp.
191
199
.
You do not currently have access to this content.