This paper deals with the vibroacoustic behavior of an electric window-lift gear motor for automotive vehicle which consists of a direct current (DC) motor and a worm gear. After describing the overall vibroacoustic behavior of this system and identifying the various excitation sources involved, this study focuses on the excitation sources associated to the contacts between brushes and commutator. To that end, a specific test bench is designed. It makes use of a modified gear motor for which various specific rotors are driven with an external brushless motor. It allows the discrimination of some excitation sources associated to the contact between brushes and commutator by removing them one after the other. The respective weight of friction, mechanical shocks, electrical current flow, and commutation arcs occurring jointly at the brush/commutator interface are dissociated and evaluated. The friction and the mechanical shocks between brushes and commutator blades increase the vibroacoustic response of the window-lift gear motor. The flowing of electrical current in brushes/commutator contacts tends to moderate the frictional component of excitation sources, while commutation arcs induce their rising, leading to a global additive contribution to the dynamic response.

References

1.
Qatu
,
M. S.
,
Abdelhamid
,
M. K.
,
Pang
,
J.
, and
Sheng
,
G.
,
2009
, “
Overview of Automotive Noise and Vibration
,”
Int. J. Veh. Noise Vib.
,
5
(
1–2
), pp.
1
35
.
2.
Robinson
,
I.
,
Walsh
,
S. J.
, and
Stimpson
,
G.
,
1998
, “
Vehicle Accessory Tonal Noise: Experimental Determination and Subjective Assessment
,”
International Congress on Noise Control Engineering (Sound and Silence, Setting the Balance)
(
Inter-Noise
), Christchurch, New Zealand, Nov. 16–18, pp.
1049
1052
.https://dspace.lboro.ac.uk/2134/6527
3.
Revel
,
G. M.
,
Santolhi
,
C.
, and
Tomasini
,
E. P.
,
1997
, “
Laser-Doppler Vibration and Acoustic Intensity Measurements for Dynamic Characterization and Noise Reduction in a Car Window Lift System
,”
Proc. SPIE
,
3089
, pp.
1636
1642
.https://www.researchgate.net/publication/252485130_Laser-doppler_Vibration_and_Acoustic_Intensity_Measurements_for_Dynamic_Characterization_and_Noise_Reduction_in_a_Car_Window_Lift_System
4.
Hallal
,
J.
,
Druesne
,
F.
, and
Lanfranchi
,
V.
,
2013
, “
Study of Electromagnetic Forces Computation Methods for Machine Vibration Estimation
,” International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (
ISEF
), Ohrid, Macedonia, Sept. 12–14http://www.academia.edu/21368134/Study_of_electromagnetic_forces_computation_methods_for_machine_vibration_estimation.
5.
Xut
,
M.
, and
Marangoni
,
R. D.
,
1994
, “
Vibration Analysis of a Motor-Flexible Coupling-Rotor System Subject to Misalignment and Unbalance—Part 1: Theoretical Model Analysis
,”
J. Sound Vib.
,
176
(
5
), pp.
663
679
.
6.
Xut
,
M.
, and
Marangoni
,
R. D.
,
1994
, “
Vibration Analysis of a Motor-Flexible Coupling-Rotor System Subject to Misalignment and Unbalance—Part 2: Experimental Validation
,”
J. Sound Vib.
,
176
(
5
), pp.
681
691
.
7.
Le Bot
,
A.
, and
Bou Chakra
,
E.
,
2010
, “
Measurement of Friction Noise Versus Contact Area of Rough Surfaces Weakly Loaded
,”
Tribol. Lett.
,
37
(
2
), pp.
273
281
.
8.
Welbourn
,
D. B.
,
1979
, “
Fundamental Knowledge of Gear Noise—A Survey
,”
Conference on Noise and Vibrations of Engines and Transmissions
, Cranfield, UK, July 10–12, Paper No. C177/79.
9.
Rigaud
,
E.
,
Sabot
,
J.
, and
Perret-Liaudet
,
J.
,
2000
, “
Comprehensive Approach for the Vibrational Response Analysis of a Gearbox
,”
Rev. Eur. Élém. Finis
,
9
(
1–3
), pp.
315
330
.
10.
Holm
,
R.
,
1967
,
Electric contacts—Theory and Application
,
Springer-Verlag
,
Berlin
.
11.
Dupont
,
J. B.
,
Aydoun
,
R.
, and
Bouvet
,
P.
,
2014
, “
Simulation of the Noise Radiated by an Automotive Electric Motor: Influence of the Motor Defects
,”
SAE Int. J. Altern. Powertrains
,
3
(
2
), pp.
310
320
.
12.
Hamzaoui
,
N.
,
Boisson
,
C.
, and
Lesueur
,
C.
,
1998
, “
Vibroacoustic Analysis and Identification of Defects in Rotating Machinery—Part I: Theoretical Model
,”
J. Sound Vib.
,
216
(
4
), pp.
553
570
.
13.
Hamzaoui
,
N.
,
Boisson
,
C.
, and
Lesueur
,
C.
,
1998
, “
Vibroacoustic Analysis and Identification of Defects in Rotating Machinery—Part II: Experimental Study
,”
J. Sound Vib.
,
216
(
4
), pp.
571
583
.
14.
Tavakoli
,
M. S.
, and
Houser
,
D. R.
,
1986
, “
Optimum Profile Modifications for the Minimization of Static Transmission Errors of Spur Gears
,”
J. Mech. Trans. Autom.
,
108
(
1
), pp.
86
94
.
15.
Rigaud
,
E.
, and
Barday
,
D.
,
1999
, “
Modelling and Analysis of Static Transmission Error. Effect of Wheel Body Deformation and Interactions Between Adjacent Loaded Teeth
,”
Fourth World Congress on Gearing and Power Transmission
, Paris, France, Mar. 16–18.https://hal.archives-ouvertes.fr/hal-00121847/document
16.
Hiltcher
,
Y.
,
Guingand
,
M.
, and
De Vaujany
,
J. P.
,
2006
, “
Load Sharing of Worm Gear With a Plastic Wheel
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
23
30
.
17.
Jbily
,
D.
,
Guingand
,
M.
, and
De Vaujany
,
J. P.
,
2014
, “
Loaded Behaviour of Steel/Bronze Worm Gear
,”
International Gear Conference
, Lyon, France, Aug. 26–28, pp.
32
42
.
18.
Carbonelli
,
A.
,
Rigaud
,
E.
, and
Perret-Liaudet
,
J.
,
2016
, “
Vibro-Acoustic Analysis of Geared Systems—Predicting and Controlling the Whining Noise
,”
Automotive NVH Technology
(SpringerBriefs in Applied Sciences and Technology)
,
A.
Fuchs
,
E.
Nijman
, and
H.-H.
Priebsch
, eds., Springer International Publishing, Berlin, pp.
63
79
.
19.
Cameron
,
D. E.
, and
Lang
,
J. H.
,
1992
, “
The Origin and Reduction of Acoustic Noise in Doubly Salient Variable-Reluctance Motors
,”
IEEE Trans. Ind. Appl.
,
28
(
6
), pp.
1250
1255
.
20.
Braunovic
,
M.
,
Konchitz
,
V. V.
, and
Myskkin
N. K.
,
2007
,
Electrical Contacts—Fundamentals Application and Technology
,
CRC Press
,
London
.
21.
Lancaster
,
J. K.
,
1964
, “
The Effect of Current on the Friction of Carbon Brush Materials
,”
Br. J. Appl. Phys.
,
15
(
1
), pp.
29
43
.
22.
Paulmier
,
D.
,
El Mansori
,
M.
, and
Zaidi
,
H.
,
1997
, “
Study of Magnetized or Electrical Sliding Contact of a Steel XC48/Graphite Couple
,”
Wear
,
203–204
, pp.
148
154
.
23.
Zhao
,
H.
,
Barber
,
G. C.
, and
Liu
,
J.
,
2001
, “
Friction and Wear in High Speed Sliding With and Without Electrical Current
,”
Wear
,
248
(5–6), pp.
409
414
.
24.
Robert
,
F.
,
Csapo
,
E.
,
Zaidi
,
H.
, and
Paulmier
,
D.
,
1995
, “
Influence of the Current and Environment on the Superficial Structure of a Graphite Electrical Collector
,”
Int. J. Mach. Tools Manuf.
,
35
(
2
), pp.
259
262
.
25.
Csapo
,
E.
,
Zaidi
,
H.
,
Paulmier
,
D.
,
Kadiri
,
E. K.
,
Bouchoucha
,
A.
, and
Robert
,
F.
,
1995
, “
Influence of the Electrical Current on the Graphite Surface in an Electrical Sliding Contact
,”
Surf. Coat. Technol.
,
76–77
(Pt. 2), pp.
421
424
.
26.
Hamilton
,
R. J.
,
2000
, “
DC Motor Brush Life
,”
IEEE Trans. Ind. Appl.
,
36
(
6
), pp.
1682
1687
.
27.
Lawson
,
D. K.
, and
Dow
,
T. A.
,
1985
, “
The Sparking and Wear of High Current Density Electrical Current
,”
Wear
,
102
(1–2), pp.
105
125
.
28.
Sawa
,
K.
, and
Shimoda
,
N.
,
1992
, “
A Study of Commutation Arcs of DC Motors for Automotive Fuel-Pumps
,”
IEEE Trans. Compon. Hybrids Manuf. Technol.
,
15
(
2
), pp.
193
197
.
29.
Shobert
,
E. I.
,
1965
,
Carbon Brushes—The Physics and Chemistry of Sliding Contact
,
Chemical Publishing Company
,
New York
.
30.
Takaoka
,
M.
, and
Sawa
,
K.
,
2001
, “
An Influence of Commutation Arcs in Gasoline on Brush Wear and Commutator
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
3
), pp.
349
352
.
You do not currently have access to this content.