Undesirable rotor–stator rub is frequently observed in rotordynamic systems, and has been the subject of many investigations. Most of these studies employ a simple piecewise-smooth linear-elastic contact model (LECM), where the rotor switches between noncontacting and contacting operation once the clearance is exceeded (various complications have been incorporated, though the essential model premises endure). Though useful as a first step, the LECM relies on an arcane contact stiffness estimate, and therefore does not emulate the actual contacting surfaces. Consequentially, the LECM fails to elucidate how real surface parameters influence contact severity and surface durability. This work develops a novel model for rotor–stator rub which is commensurate with reality by treating the surfaces as a collection of stochastically distributed asperities. Specifically, the elastoplastic Jackson–Green (JG) rough surface contact model is used to calculate the quasistatic contact force as a function of rotor displacement, where bulk material deformation and surface cumulative damage are ignored. A simple exponential fit of the contact force is proposed to reduce computational burden associated with evaluating the JG rough surface contact model at each simulation time step. The rotor's response using the LECM and JG rough surface contact model is compared via shaft speed bifurcations and orbit analysis. Significant differences are observed between the models, though some similarities exist for responses with few contacts per rotor revolution.

References

1.
Green
,
I.
, and
Casey
,
C.
,
2005
, “
Crack Detection in a Rotor Dynamic System by Vibration Monitoring: Part I—Analysis
,”
ASME J. Eng. Gas Turbines Power
,
127
(
2
), pp.
425
436
.
2.
Varney
,
P.
, and
Green
,
I.
,
2012
, “
Crack Detection in a Rotordynamic System by Vibration Monitoring—Part II: Extended Analysis and Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
112501
.
3.
Varney
,
P.
, and
Green
,
I.
,
2013
, “
Rotordynamic Crack Diagnosis: Distinguishing Crack Location and Depth
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
112101
.
4.
Lee
,
A. S.
, and
Green
,
I.
,
1994
, “
Higher Harmonic Oscillations in a Non-Contacting FMR Mechanical Face Seal Test Rig
,”
ASME J. Vib. Acoust.
,
116
(
2
), pp.
161
167
.
5.
Varney
,
P.
, and
Green
,
I.
,
2014
, “
Rotor/Stator Rubbing Contact in an Overhung Rotordynamic System
,”
STLE Annual Meeting
, Lake Buena Vista, FL, May 18–22.
6.
Beatty
,
R. F.
,
1985
, “
Differentiating Rotor Response Due to Radial Rubbing
,”
J. Vib., Acoust., Stress, Reliab. Des.
,
107
(
2
), pp.
151
160
.
7.
Choy
,
F. K.
, and
Padovan
,
J.
,
1987
, “
Nonlinear Transient Analysis of Rotor-Casing Rub Events
,”
J. Sound Vib.
,
113
(
3
), pp.
529
545
.
8.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1990
, “
Bifurcation Analysis for a Modified Jeffcott Rotor With Bearing Clearances
,”
Nonlinear Dyn.
,
1
(
3
), pp.
221
241
.
9.
Chu
,
F.
, and
Zhang
,
Z.
,
1997
, “
Bifurcation and Chaos in a Rub-Impact Jeffcott Rotor System
,”
J. Sound Vib.
,
210
(
1
), pp.
1
18
.
10.
Sawicki
,
J. T.
,
Padovan
,
J.
, and
Al-Khatib
,
R.
,
1999
, “
The Dynamics of Rotor With Rubbing
,”
Int. J. Rotating Mach.
,
5
(
4
), pp.
295
304
.
11.
Edwards
,
S.
,
Lees
,
A. W.
, and
Friswell
,
M. I.
,
1999
, “
The Influence of Torsion on Rotor/Stator Contact in Rotating Machinery
,”
J. Sound Vib.
,
225
(
4
), pp.
767
778
.
12.
Lin
,
F.
,
Schoen
,
M. P.
, and
Korde
,
U. A.
,
2001
, “
Numerical Investigation With Rub-Related Vibration in Rotating Machinery
,”
J. Vib. Control
,
7
(
6
), pp.
833
848
.
13.
Karpenko
,
E. V.
,
Wiercigroch
,
M.
, and
Cartmell
,
M. P.
,
2002
, “
Regular and Chaotic Dynamics of a Discontinuously Nonlinear Rotor System
,”
Chaos, Solitons, Fractals
,
13
(
6
), pp.
1231
1242
.
14.
Qin
,
W.
,
Chen
,
G.
, and
Meng
,
G.
,
2004
, “
Nonlinear Responses of a Rub-Impact Overhung Rotor
,”
Chaos, Solitons, Fractals
,
19
(
5
), pp.
1161
1172
.
15.
Peng
,
Z. K.
,
Chu
,
F. L.
, and
Tse
,
P. W.
,
2005
, “
Detection of the Rubbing-Caused Impacts for Rotor-Stator Fault Diagnosis Using Reassigned Scalogram
,”
Mech. Syst. Signal Process.
,
19
(
2
), pp.
391
409
.
16.
Zhang
,
W. M.
, and
Meng
,
G.
,
2006
, “
Stability, Bifurcation and Chaos of a High-Speed Rub-Impact Rotor System in MEMS
,”
Sens. Actuators
,
127
(
1
), pp.
163
178
.
17.
Chang-Jian
,
C. W.
, and
Chen
,
C. K.
,
2009
, “
Chaos of Rub-Impact Rotor Supported by Bearings With Nonlinear Suspension
,”
Tribol. Int.
,
42
(
3
), pp.
426
439
.
18.
Inayat-Hussain
,
J. I.
,
2010
, “
Bifurcations in the Response of a Jeffcott Rotor With Rotor-to-Stator Rub
,”
ASME
Paper No. ESDA2010-24453.
19.
Cao
,
J.
,
Ma
,
C.
,
Jiang
,
Z.
, and
Liu
,
S.
,
2011
, “
Nonlinear Dynamic Analysis of Fractional Order Rub-Impact Rotor System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1443
1463
.
20.
Abu-Mahfouz
,
I.
, and
Banerjee
,
A.
,
2013
, “
On the Investigation of Nonlinear Dynamics of a Rotor With Rub-Impact Using Numerical Analysis and Evolutionary Algorithms
,”
Procedia Comput. Sci.
,
20
, pp.
140
147
.
21.
Chavez
,
J. P.
, and
Wiercigroch
,
M.
,
2013
, “
Bifurcation Analysis of Periodic Orbits of a Non-Smooth Jeffcott Rotor Model
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
9
), pp.
2571
2580
.
22.
Groll
,
G. V.
, and
Ewins
,
D. J.
,
2002
, “
A Mechanism of Low Subharmonic Response in Rotor/Stator Contact-Measurements and Simulation
,”
ASME J. Vib. Acoust.
,
124
(
3
), pp.
350
358
.
23.
Abu-Mahfouz
,
1993
, “
Routes to Chaos in Rotor Dynamics
,” Ph.D. thesis, Case Western Reserve University, Cleveland, OH.
24.
Popprath
,
S.
, and
Ecker
,
H.
,
2007
, “
Nonlinear Dynamics of a Rotor Contacting an Elastically Suspended Stator
,”
J. Sound Vib.
,
308
, pp.
767
784
.
25.
Varney
,
P.
, and
Green
,
I.
,
2014
, “
Nonlinear Phenomena, Bifurcations, and Routes to Chaos in an Asymmetrically Supported Rotor-Stator Contact System
,”
J. Sound Vib.
,
336
, pp.
207
226
.
26.
Green
,
I.
,
2005
, “
Poisson Ratio Effects and Critical Values in Spherical and Cylindrical Hertzian Contact
,”
Int. J. Appl. Mech. Eng.
,
10
(
3
), pp.
451
462
.
27.
Varney
,
P.
, and
Green
,
I.
,
2015
, “
Applying Rough Surface Contact of Curved Conformal Surfaces to Rotor-Stator Rub
,”
70th STLE Annual Meeting
, Dallas, TX, May 17–21.
28.
Varney
,
P.
, and
Green
,
I.
,
2015
, “
Rough Surface Contact of Curved Conformal Surfaces: An Application to Rotor-Stator Rub
,”
ASME J. Tribol.
(in press).
29.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. A
,
295
(
1442
), pp.
300
319
.
30.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.
31.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
32.
Green
,
I.
,
2002
, “
A Transient Dynamic Analysis of Mechanical Seals Including Asperity Contact and Face Deformation
,”
Tribol. Trans.
,
45
(
3
), pp.
284
293
.
33.
Jackson
,
R. L.
, and
Green
,
I.
,
2006
, “
A Statistical Model of Elasto-Plastic Asperity Contact Between Rough Surfaces
,”
Tribol. Int.
,
39
(
9
), pp.
906
914
.
You do not currently have access to this content.