The 3D time-domain computational fluid dynamics (CFD) approach is used to calculate the acoustic attenuation performance of perforated tube silencers without and with flow. For the crossflow perforated tube silencer and straight-through perforated tube silencers, the transmission loss predictions agree well with the experimental measurements available in the literature. Then, the 3D time-domain CFD approach is employed to investigate the effects of flow velocity and temperature on the acoustic attenuation performance of perforated tube silencers. The numerical results demonstrated that the transmission loss is increased at most frequencies for the crossflow perforated tube silencer as the air flow increases, while the air flow has little influence on the acoustic attenuation in the plane wave range and increases the acoustic attenuation at higher frequencies for the straight-through perforated tube silencers. Increasing the air temperature shifts the transmission loss curve to higher frequency and lowers the resonance peaks somewhat. The pressure drops of perforated tube silencers are predicted by performing the 3D steady flow computation using CFD. The pressure drop of the crossflow perforated tube silencer is much higher than those of the straight-through perforated tube silencer at the same flow conditions, and the pressure drop of the straight-through perforated tube silencer increases gradually as the porosity increases.

References

1.
Sullivan
,
J. W.
,
1979
, “
A Method for Modeling Perforated Tube Muffler Components. II. Applications
,”
J. Acoust. Soc. Am.
,
66
(
3
), pp.
779
788
.10.1121/1.383680
2.
Ross
,
D. F.
,
1981
, “
A Finite Element Analysis of Perforated Component Acoustic Systems
,”
J. Sound Vib.
,
79
(
1
), pp.
133
143
.10.1016/0022-460X(81)90333-3
3.
Fang
,
Z.
, and
Ji
,
Z. L.
,
2012
, “
Finite Element Analysis of Transversal Modes and Acoustic Attenuation Characteristics of Perforated Tube Silencers
,”
Noise Control Eng. J.
,
60
(
3
), pp.
340
349
.10.3397/1.3701000
4.
Wu
,
T. W.
, and
Wan
,
G. C.
,
1996
, “
Muffler Performance Studies Using a Direct Mixed-Body Boundary Element Method and a Three-Point Method for Evaluating Transmission Loss
,”
ASME J. Vibr. Acoust.
,
118
(
3
), pp.
479
484
.10.1115/1.2888209
5.
Wang
,
C. N.
, and
Liao
,
C. Y.
,
1998
, “
Boundary Integral Equation Method for Evaluating the Performance of Straight-Through Resonator With Mean Flow
,”
J. Sound Vib.
,
216
(
2
), pp.
281
294
.10.1006/jsvi.1998.1662
6.
Ji
,
Z. L.
, and
Selamet
,
A.
,
2000
, “
Boundary Element Analysis of Three-Pass Perforated Duct Mufflers
,”
Noise Control Eng. J.
,
48
(
5
), pp.
151
156
.10.3397/1.2827962
7.
Lee
,
I.
, and
Selamet
,
A.
,
2006
, “
Impact of Perforation Impedance on the Transmission Loss of Reactive and Dissipative Silencers
,”
J. Acoust. Soc. Am.
,
120
(
6
), pp.
3706
3713
.10.1121/1.2359703
8.
Ji
,
Z. L.
,
2010
, “
Boundary Element Acoustic Analysis of Hybrid Expansion Chamber Silencers With Perforated Facing
,”
Eng. Anal. Boundary Elem.
,
34
(
7
), pp.
690
696
.10.1016/j.enganabound.2010.02.006
9.
Ji
,
Z. L.
, and
Fang
,
Z.
,
2011
, “
On the Acoustic Impedance of Perforates and Its Application to Acoustic Attenuation Predictions for Perforated Tube Silencers
,”
Inter-Noise 2011 Conference
,
Osaka, Japan
, September 4–7.
10.
Morel
,
T.
,
Morel
,
J.
, and
Blaser
,
D.
,
1991
, “
Fluid Dynamic and Acoustic Modeling of Concentric-Tube Resonators/Silencers
,”
SAE
Technical Paper 910072.10.4271/910072
11.
Morel
,
T.
,
Silvestri
,
J.
,
Goerg
,
K.
, and
Jebasinski
,
R.
,
1999
, “
Modeling of Engine Exhaust Acoustics
,”
SAE
Technical Paper 1999-01-1665.10.4271/1999-01-1665
12.
Selamet
,
A.
,
Dickey
,
N. S.
, and
Novak
,
J. M.
,
1995
, “
A Time-Domain Computational Simulation of Acoustic Silencers
,”
ASME J. Vibr. Acoust.
,
117
, pp.
323
331
.10.1115/1.2874454
13.
Dickey
,
N. S.
,
Selamet
,
A.
, and
Novak
,
J. M.
,
1998
, “
Multi-Pass Perforated Tube Silencers: A Computational Approach
,”
J. Sound Vib.
,
211
(
3
), pp.
435
448
.10.1006/jsvi.1997.1318
14.
Middelberg
,
J. M.
,
Barber
,
T. J.
,
Leong
,
S. S.
,
Byrne
,
K. P.
, and
Leonardi
,
E.
,
2004
, “
CFD Analysis of the Acoustic and Mean Flow Performance of Simple Expansion Chamber Mufflers
,”
ASME
Paper No. IMECE2004-61371.10.1115/IMECE2004-61371
15.
Broatch
,
A.
,
Margot
,
X.
, and
Gil
,
A.
,
2005
, “
A CFD Approach to the Computation of the Acoustic Response of Exhaust Mufflers
,”
J. Comput. Acoust.
,
13
(
2
), pp.
301
316
.10.1142/S0218396X05002682
16.
Ji
,
Z. L.
,
Xu
,
H. S.
, and
Kang
,
Z. X.
,
2010
, “
Influence of Mean Flow on Acoustic Attenuation Performance of Straight-Through Perforated Tube Reactive Silencers and Resonators
,”
Noise Control Eng. J.
,
58
(
1
), pp.
12
17
.10.3397/1.3244593
17.
Torregrosa
,
A. J.
,
Fajardo
,
P.
,
Gil
,
A.
, and
Navarro
,
R.
,
2012
, “
Development of Non-Reflecting Boundary Condition for Application in 3D Computational Fluid Dynamic Codes
,”
Eng. Appl. Comp. Fluid Mech.
,
6
(
3
), pp.
447
460
.
18.
Lee
,
S. H.
, and
Ih
,
J. G.
,
2008
, “
Effect of Non-Uniform Perforation in the Long Concentric Resonator on Transmission Loss and Back Pressure
,”
J. Sound Vib.
,
311
, pp.
280
296
.10.1016/j.jsv.2007.09.005
19.
Lee
,
S. H.
, and
Ih
,
J. G.
,
2003
, “
Empirical Model of the Acoustic Impedance of a Circular Orifice in Grazing Mean Flow
,”
J. Acoust. Soc. Am.
,
114
(
1
), pp.
98
113
.10.1121/1.1581280
20.
Munjal
,
M. L.
,
1987
,
Acoustic of Ducts and Mufflers
,
Wiley
,
New York
, Chap. 2.
21.
Singh
,
R.
, and
Katra
,
T.
,
1978
, “
Development of an Impulse Technique for Measurement of Muffler Characteristics
,”
J. Sound Vib.
,
56
(
2
), pp.
279
298
.10.1016/S0022-460X(78)80021-2
22.
Fluent
,
2006
,
Fluent 6.3 User's Guide
,
Fluent Inc, New York.
You do not currently have access to this content.