In this article, the closed-form dynamic equations of planar flexible link manipulators (FLMs), with revolute joints and constant cross sections, are derived combining Lagrange’s equations and the assumed mode shape method. To overcome the lengthy and complicated derivative calculation of the Lagrangian function of a FLM, these computations are done only once for a single flexible link manipulator with a moving base (SFLMB). Employing the Lagrange multipliers and the dynamic equations of the SFLMB, the equations of motion of the FLM are derived in terms of the dependent generalized coordinates. To obtain the closed-form dynamic equations of the FLM in terms of the independent generalized coordinates, the natural orthogonal complement of the Jacobian constraint matrix, which is associated with the velocity constraints in the linear homogeneous form, is used. To verify the proposed closed-form dynamic model, the simulation results obtained from the model were compared with the results of the full nonlinear finite element analysis. These comparisons showed sound agreement. One of the main advantages of this approach is that the derived dynamic model can be used for the model based end-effector control and the vibration suppression of planar FLMs.

1.
Wang
,
F. Y.
, and
Gao
,
Y.
, 2003,
Advanced Studies of Flexible Robotic Manipulators: Modeling, Design, Control and Applications: Series in Intelligent Control and Intelligent Automation
,
World Scientific
,
River Edge, NJ.
2.
Low
,
K. H.
, and
Vidyasagar
,
M.
, 1988, “
A Lagrangian Formulation of the Dynamic Model for Flexible Manipulator Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
110
(
2
), pp.
175
181
.
3.
Zhang
,
X.
,
Xu
,
W.
,
Nair
,
S. S.
, and
Cellabonia
,
V.
, 2005, “
PDE Modeling and Control of a Flexible Two-Link Manipulator
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
13
(
2
), pp.
301
312
.
4.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Upper Saddle River, NJ.
5.
Hoa
,
S. V.
, 1979, “
Vibration of a Rotating Beam With Tip Mass
,”
J. Sound Vib.
0022-460X,
67
(
3
), pp.
369
381
.
6.
Naganthan
,
G.
, and
Soni
,
A. H.
, 1987, “
Coupling Effects of Kinematics and Flexibility in Manipulators
,”
Int. J. Robot. Res.
0278-3649,
6
(
1
), pp.
75
84
.
7.
Khulief
,
Y. A.
, 1992, “
On the Finite Element Dynamic Response of Flexible Mechanism
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
97
(
1
), pp.
23
32
.
8.
Khulief
,
Y. A.
, 2001, “
Vibration Suppression in Rotating Beams Using Active Modal Control
,”
J. Sound Vib.
0022-460X,
242
(
4
), pp.
681
699
.
9.
Yang
,
J. B.
,
Jiang
,
L. J.
, and
Chen
,
D. Ch.
, 2004, “
Dynamic Modeling and Control of a Rotating Euler-Bernoulli Beam
,”
J. Sound Vib.
0022-460X,
274
(
3
), pp.
863
875
.
10.
Mayo
,
J.
, and
Dominguez
,
J.
, 1997, “
Finite Element Geometrically Nonlinear Dynamic Formulation of Flexible Multibody System Using a New Displacement Representation
,”
ASME J. Vibr. Acoust.
0739-3717,
119
(
4
), pp.
573
581
.
11.
Zhang
,
X.
, and
Erdman
,
A. G.
, 2006, “
Optimal Placement of Piezoelectric Sensors and Actuators for Controlled Flexible Linkage Mechanisms
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
2
), pp.
256
260
.
12.
Prezemienecki
,
J. S.
, 1967,
Theory of Matrix Structural Analysis
,
McGraw-Hill
,
New York
.
13.
Meirovitch
,
L.
, 1986,
Elements of Vibration Analysis
,
McGraw-Hill
,
New York
.
14.
Book
,
W. J.
, 1984, “
Recursive Lagrangian Dynamics of Flexible Manipulator Arms
,”
Int. J. Robot. Res.
0278-3649,
3
(
3
), pp.
87
101
.
15.
De Luca
,
A.
, and
Siciliano
,
B.
, 1991, “
Closed-Form Dynamic Model of Planar Multilink Lightweight Robots
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
21
(
4
), pp.
826
839
.
16.
Yuan
,
B. S.
,
Book
,
W. J.
, and
Huggins
,
J. D.
, 1993, “
Dynamics of Flexible Manipulator Arms: Alternative Derivation, Verification, and Characteristics for Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
115
(
3
), pp.
394
404
.
17.
Chen
,
W.
, 2001, “
Dynamic Modeling of Multi-Link Flexible Robotic Manipulators
,”
Comput. Struct.
0045-7949,
79
(
2
), pp.
183
195
.
18.
Gosavi
,
S. V.
, and
Kelkar
,
A. G.
, 2004, “
Modelling, Identification and Passivity-Based Robust Control of Piezo-Actuated Flexible Beam
,”
ASME J. Vibr. Acoust.
0739-3717,
126
(
2
), pp.
260
271
.
19.
Theodore
,
R. J.
, and
Ghosal
,
A.
, 1995, “
Comparison of the Assumed Modes and Finite Element Models for Flexible Multilink Manipulators
,”
Int. J. Robot. Res.
0278-3649,
14
(
2
), pp.
91
111
.
20.
Hale
,
J. K.
, and
Verduyn Lunel
,
S. M.
, 2003, “
Stability and control of feedback systems with time delays
,”
Int. J. Syst. Sci.
0020-7721,
34
(
8-9
), pp.
497
504
.
21.
Benosman
,
M.
,
Le Vey
,
G.
,
Lanari
,
L.
, and
De Luca
,
A.
, 2004, “
Rest-to-Rest Motion for Planar Multi-Link Flexible Manipulator through Backward Recursion
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
(
1
), pp.
115
123
.
22.
Cheong
,
J.
,
Chung
,
W. K.
, and
Youm
,
Y.
, 2004, “
Inverse Kinematic of Multilink Flexible Robotics for High-Speed Application
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
2
), pp.
269
282
.
23.
Moallem
,
M.
,
Patel
,
R. V.
, and
Khorasani
,
K.
, 2001, “
Nonlinear Tip-Position Control of a Flexible-Link Manipulator: Theory and Experiments
,”
Automatica
0005-1098,
37
(
11
), pp.
1825
1834
.
24.
Shan
,
J.
,
Hong
,
T. L.
, and
Sun
,
D.
, 2005, “
Slewing and Vibration Control of a Single-Link Flexible Manipulator by Positive Position Feedback (PPF)
,”
Mechatronics
0957-4158,
15
(
4
), pp.
487
503
.
25.
Morita
,
Y.
,
Ukia
,
H.
, and
Kando
,
H.
, 1997, “
Robust Trajectory Tracking Control of Elastic Robot Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
119
(
4
), pp.
727
735
.
26.
Moallem
,
M.
,
Khorasani
,
K.
, and
Patel
,
R. V.
, 1998, “
Inversion—Based Sliding Control of a Flexible-Link Manipulator
,”
Int. J. Control
0020-7179,
71
(
3
), pp.
477
490
.
27.
Ginsberg
,
J. H.
, 1995,
Advanced Engineering Dynamics
,
Cambridge University Press
,
New York
.
28.
Greenwood
,
D. T.
, 1965,
Principles of Dynamics
,
Prentice-Hall
,
New York
.
29.
Centinkunt
,
S.
, and
Ittoop
,
B.
, “
Computer-Automated Symbolic Modeling of Dynamics of Robotic Manipulators With Flexible Link
,”
IEEE Trans. Rob. Autom.
1042-296X
8
(
1
), pp.
94
105
.
30.
Li
,
C. J.
, and
Sankar
,
T. S.
, 1993, “
Systematic Methods for Efficient Modeling and Dynamics of Flexible Robot Manipulators
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
23
(
1
), pp.
77
95
.
31.
Angeles
,
J.
, and
Lee
,
S.
, 1988, “
The Formulation of Dynamical Equations of Holonomic Mechanical Systems Using a Natural Orthogonal Complement
,”
ASME J. Appl. Mech.
0021-8936,
55
(
1
), pp.
243
244
.
32.
Saha
,
S. K.
, and
Angeles
,
J.
, 1991, “
Dynamics of Nonholonomic Mechanical Systems Using a Natural Orthogonal Complement
,”
ASME J. Appl. Mech.
0021-8936,
58
(
1
), pp.
238
243
.
33.
Fotouhi
,
R.
, 2007, “
Dynamic Analysis of a Very Flexible Beam
,”
J. Sound Vib.
0022-460X,
305
(
3
), pp.
521
533
.
34.
Vakil
,
M.
,
Fotouhi
,
R.
, and
Nikiforuk
,
P. N.
, 2007, “
Application of the Integral Manifold Concept for the End-Effector Trajectory Tracking of a Flexible Link Manipulator
,”
American Control Conference
,
New York
, Jul. 11–13, pp.
741
747
.
35.
Vakil
,
M.
,
Fotouhi
,
R.
, and
Nikiforuk
,
P. N.
, 2007, “
End-Effector Trajectory Tracking of a Flexible Link Manipulator Using Integral Manifold Concept
,”
J. Sound Vib.
0022-460X, to be published.
36.
Oguamanam
,
D. C. D.
,
Heppler
,
G. R.
, and
Hansen
,
J. S.
, 1998, “
Modelling of a Flexible Slewing Link
,”
ASME J. Vibr. Acoust.
0739-3717,
120
(
4
), pp.
994
996
.
37.
Alberts
,
T. A.
,
Xia
,
H.
, and
Chen
,
Y.
, 1992, “
Dynamic Analysis to Evaluate Viscoelastic Passive Damping Augmentation for the Space Shuttle Remote Manipulator System
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
114
(
3
), pp.
468
474
.
38.
Fraser
,
R.
, and
Daniel
,
R. W.
, 1991,
Perturbation Techniques for Flexible Manipulators
,
Kluwer Academic
,
Boston
.
39.
Trindade
,
M. A.
, and
Sampaio
,
R.
, 2002, “
Dynamics of Beams Undergoing Large Rotations Accounting for Arbitrary Axial Deformation
,”
J. Guid. Control Dyn.
0731-5090,
25
(
4
), pp.
634
643
.
40.
Shabana
,
A. A.
, 2001,
Computational Dynamics
,
Wiley
,
New York
.
41.
Saha
,
S. K.
, 1999, “
Dynamics of Serial Multibody Systems Using the Decoupled Natural Orthogonal Complement Matrices
,”
ASME J. Appl. Mech.
0021-8936,
66
(
4
), pp.
986
996
.
42.
Khan
,
A. W.
,
Krovi
,
V. N.
,
Saha
,
S. K.
, and
Angeles
,
J.
, 2005, “
Recursive Kinematics and Inverse Dynamics for a Planar 3R Parallel Manipulator
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
(
4
), pp.
529
536
.
43.
Bellezza
,
F.
,
Lanari
,
L.
, and
Ulivi
,
G.
, 1990, “
Exact Modeling of Flexible Slewing Link
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Los Angeles, CA
, pp.
734
739
.
44.
ANSYS, Release 10, “
Release 10 Documentation for ANSYS
,” Element Reference, www.ansys.comwww.ansys.com.
45.
Fotouhi
,
R.
, 1996, “
Time Optimal Control of 2-Link Manipulators
,” Ph.D. thesis, University of Saskatchewan, Saskatoon, Canada.
46.
Fotouhi
,
R.
,
Szyszkowski
,
W.
,
Nikiforuk
,
P. N.
, and
Gupta
,
M. M.
, 1999, “
Parameter Identification and Trajectory Following of a Two-Link Rigid Manipulator
,”
Journal of Systems and Control Engineering, Proceedings Institution of Mechanical Engineering, Part I
,
213
(
6
), pp.
455
466
.
You do not currently have access to this content.