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Voltage-Induced Snap-Through
of an Asymmetrically Laminated,
Piezoelectric, Thin-Film
Diaphragm Micro-Actuator—
Part 1: Experimental Studies
and Mathematical Modeling
A piezoelectric thin-film microactuator in the form of an asymmetrically laminated dia-
phragm is developed as an intracochlear hearing aid. Experimentally, natural frequen-
cies of the microactuator bifurcate with respect to an applied bias voltage. To
qualitatively explain the findings, we model the lead-zirconate-titanate (PZT) diaphragm
as a doubly curved, asymmetrically laminated, piezoelectric shallow shell defined on a
rectangular domain with simply supported boundary conditions. The von Karman type
nonlinear strain–displacement relationship and the Donnell–Mushtari–Vlasov theory are
used to calculate the electric enthalpy and elastic strain energy. Balance of virtual work
between two top electrodes is also considered to incorporate an electric-induced dis-
placement field that has discontinuity of in-plane strain components. A set of discretized
equations of motion are obtained through a variational approach.
[DOI: 10.1115/1.4039535]

1 Introduction

For the last decade, bistability behavior of micro-electrical-
mechanical systems (MEMS) has attracted significant attention of
researchers [1–17]. One unique phenomenon of these bistable
devices is the ability to migrate from one equilibrium state to
another via snap-through. The snap-through phenomenon could
enable new applications for electrostatic MEMS actuators, such as
switches [18–20], microvalves and microrelays [21–23], and
band-pass filters [10]. The study of snap-through also facilitates
better designs against pull-in instability of electrostatic MEMS
actuators. In fact, many MEMS structures are fabricated via
high-temperature processes. Thermal stresses resulting from these
processes often cause the MEMS structures to warp, thus produc-
ing a bistable system potentially for snap-through to occur.

In structural mechanics, snap-through instability is a well-
studied topic [24]. Snap-through instability could occur in one-
dimensional structures (e.g., arches [25–27]) or two-dimensional
structures (e.g., shells [28,29]). For MEMS devices, the study of
snap-through instability is focused primarily on electrostatic
actuators. For these systems, an applied voltage and a curved,
elastic structure form an electrostatic load causing the snap-
though. The constitutive equation of the structure follows Hooke’s
law. There are, however, many other modes of actuation in
MEMS devices, such as piezoelectric and thermal actuations.

For a piezoelectric actuator, the applied voltage affects a curved
structure via the converse piezoelectric effect. Distinct compared
to electrostatic actuators, the applied voltage changes the stiffness
and thus the stability of the structure, resulting in rich bistability
behaviors. For example, for a bimorph buckled beam under

distributed actuation, Maurini et al. [30] showed that depending
on the magnitude and phase of axial actuation, the beam can have
different numbers of equilibria and the stability of the equilibria
change accordingly. Furthermore, the voltage–displacement curve
of a bimorph curved beam of partial surface piezoelectric cover-
age subjected to bias voltages was observed separated into two
disjoint portions before and after snap through in a finite element
analysis conducted by Varelis and Saravanos; see Fig. 7 of
Ref. [31]. None of the above has been observed in electrostatic
actuators.

The purpose of this paper is to study snap-through phenomenon
of a piezoelectric MEMS actuator. The piezoelectric actuator
takes the form of a two-dimensional diaphragm with initial warp-
ing, and the snap-through is induced via an applied voltage. This
paper is motivated by the development of a lead-zirconate-titanate
(PZT), thin-film, acoustic microactuator intended for an intra-
cochlear hearing aid [32]; see Fig. 1. The microactuator consists
of four parts: a silicon diaphragm, a bulk silicon substrate, a PZT
thin-film layer, and a pair of electrodes. (Note that the four parts

Fig. 1 Schematic of the PZT thin-film micro-actuator (not to
scale)
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in Fig. 1 are not drawn to scale.) The diaphragm is anchored to
the silicon substrate. The diaphragm can be formed, for example,
by etching the silicon substrate from the bottom side to form a
cavity under the diaphragm. On top of the silicon diaphragm is a
layer of PZT thin film with a pair of bottom and top electrodes.
When a driving voltage is applied to the electrodes, the PZT thin
film extends and contracts flexing the diaphragm like a speaker.

The diaphragm of the microactuator, however, is not perfectly
flat. In fact, it is warped into a thin shell due to thermal stresses
induced in the fabrication process; see Fig. 14 of Ref. [33]. As a
result, the microactuator is likely to have multiple equilibrium
positions to enable snap-through. The snap-through instability, if
reached, may cause several concerns. First, when a PZT microac-
tuator is used in cochlea, it may need to be poled regularly to
maintain its piezoelectricity. If snap-through instability occurs
during poling, it may affect the gain and bandwidth of the micro-
actuator, as different equilibrium states imply different local stiff-
ness and natural frequencies. There is also a risk that a standard 5
V power source could drive the micro-actuator into various
domains of attraction under normal operation.

It is not a trivial task to study snap-through instability of such
PZT thin-film micro-actuators. There are several major challenges
that need to be overcome. First, there must be some preliminary
experimental results suggesting that snap-though instability may
have occurred in the operation of the PZT thin-film micro-
actuator. In other words, theoretical modeling of the snap-through
instability should be justified.

If the theoretical modeling is necessary, the second challenge
that ensues is lack of existing models. Although general nonlinear
piezoelectric shell lamination (multilayered) theories can be
found in the literature [31,34–43], when used to derive models,
various assumptions are considered. For example, a bimorph con-
figuration is often assumed, where one or multiple elastic layers
are symmetrically laminated across the thickness direction, with
two identical piezoelectric layers being on the top and bottom
surfaces, respectively [37–41,44,45]. (This configuration is
referred to as “symmetric lamination” hereafter.) Such a bimorph
configuration greatly simplifies modeling of piezoelectric actua-
tion. One immediate example is that it allows for pure bending
actuation, where the top and bottom piezoelectric layers extend
and contract against each other, excluding in-plane stretching
actuation. In fact, for an asymmetrically laminated bi-morph or
mono-morph configuration, bending and stretching actuation are
coupled with each other, e.g., see Ref. [30], and should be taken
into account. Furthermore, for piezoelectric smart structures, the
thickness of piezoelectric layers is often much thinner than elastic
layers and assumed to be negligible, and so are their elastic prop-
erties [44,46,47]. However, as will be shown later in this paper,
when the elastic properties of the piezoelectric layers are not
negligible, the applied voltage affects the stiffness of a curved
structure via the converse piezoelectric effect.

In reality, piezoelectric MEMS devices are often asymmetri-
cally laminated to minimize fabrication complexity. Moreover,
the piezoelectric and elastic layers are quite comparable in thick-
ness to maximize actuation strength. For example, the intra-
cochlear acoustic microactuator in Ref. [32] has multiple layers,
including parylene, gold, chromium, PZT, platinum, titanium, sili-
con nitride, silicon oxide, and a second parylene layer. The layers
above and below the PZT thin film total about 0.5 lm and 1.1 lm,
respectively, while the PZT thin film itself is about 1 lm in thick-
ness. By all measures, the PZT actuator diaphragm is asymmetri-
cally laminated and the thickness of the PZT thin film is not
negligible.

The third challenge is that a realistic PZT thin-film microactua-
tor employs partial electrodes to maximize actuator displacement;
see Ref. [48]. The use of partial electrodes results in discontinuous
electric fields when the voltage is applied. Studies of electro-
mechanical coupling with continuous electric fields are available
in the literature [42,43]. Studies of discontinuous electric fields,
however, remain largely open.

When asymmetric lamination and partial electrode coverage
or more general configurations are considered, finite element
methods are predominantly used [31,35–38,42,43]. Although
finite element methods facilitate studying general configurations,
physical insights are often lost during the process.

From the discussions above, it is evident that existing theoreti-
cal studies of piezoelectric shells are not adequate for the design
and development of piezoelectric MEMS actuators. Snap-through
instability of PZT thin-film microactuators, induced by an applied
voltage, has not been extensively studied despite its potential
impact.

For the rest of the paper, we first present preliminary experi-
mental results that suggest occurrence of snap-through instability
in the PZT thin-film microactuator. The experimental results dem-
onstrate that vibration modes bifurcate when the applied voltage
exceeds a threshold. We then develop a mathematical model to
qualitatively explain the bifurcation. Specifically, we model the
PZT diaphragm as a doubly curved, asymmetrically laminated,
piezoelectric shallow shell defined on a rectangular domain with
simply supported boundary conditions. Assumptions and coordi-
nate systems of the shell model are introduced and explained.
Kinematic relations and constitutive equations are introduced to
formulate electric enthalpy and elastic strain energy of the shell
model. Virtual work done by the boundary membrane forces and
bending moments are derived and simplified. A particular shape
function of in-plane displacement fields that satisfy, in the sense
of weak form, a set of continuity and equilibrium equations along
the boundary of two partial electrodes is derived to incorporate
the discontinuous electric fields resulting from the partial electro-
des. Finally, variational forms of the potential and kinetic energy
are derived, and discretized equations of motion are obtained
through Hamilton’s principle and the Rayleigh-Ritz method using
a set of admissible shape functions and the particular shape
function.

2 Preliminary Experiment Study

The PZT thin-film microactuator shown in Fig. 1 has been
fabricated and tested [32,49]. The diaphragm has a size of 0.8 mm
by 0.8 mm and a thickness of 2–3 lm. Moreover, the diaphragm
has a bottom electrode and two top electrodes (i.e., one inner and
one outer) as illustrated in Fig. 1. Detailed description of the test
specimen can be found in Refs. [32] and [49] and is not repeated
here. The experiment was done in an aqueous environment. The
PZT thin-film microactuator was submerged in water. A voltage
drove the microactuator and a laser Doppler vibrometer measured
the velocity of the vibrating diaphragm. A spectrum analyzer
processed the driving voltage and measured velocity to obtain a
frequency response function (FRF) that characterizes the PZT
thin-film microactuator. Detailed description of the experimental
setup can also be found in Refs. [32] and [49] and is not repeated
here again.

With the test specimen and the experimental setup, we con-
ducted a preliminary experiment to investigate possible snap-
through instability of the PZT thin-film microactuator. For the first
step, a considerable direct current (DC) bias voltage (e.g., 2 V)
was applied across the outer and bottom electrodes for a suffi-
ciently long time (>20 min.). In the meantime, the inner electrode
remained floating. The hypothesis was that the bias voltage could
deflect the actuator diaphragm from one stable equilibrium config-
uration to another if the bias voltage was large enough. The next
step was to remove the DC voltage, and a swept sine measurement
was subsequently conducted. For the swept sine measurement, a
small voltage (in the order of mV) was applied across the inner
and bottom electrodes. At the same time, the outer electrode
remained floating. The purpose of the swept sine measurement
was to obtain FRFs, from which natural frequencies of the micro-
actuator diaphragm could be extracted experimentally. The
hypothesis was that natural frequencies reflected the linearized
stiffness coefficients around a stable equilibrium position. If snap-
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through instability occurred, the actuator diaphragm would move
to a different stable equilibrium position. Therefore, the linearized
stiffness coefficients would change and so would the natural fre-
quencies. These two steps were repeated by increasing or decreas-
ing the DC bias voltage hoping to maneuver the actuator
diaphragm from one stable equilibrium position to another and
then back.

Figure 2 shows the measured natural frequencies versus the DC
bias voltage varied between 5 V and �5 V. Measured FRFs are
also included Fig. 2 for comparison. The experiment started with
a zero DC biased voltage (see section 1 in Fig. 2). In the measured
FRF, there was only one significant resonance peak with a natural
frequency around 24 kHz. As the DC biased voltage increased
from 0 to 2.5 V, the resonance peak remained unchanged. When
the DC bias voltage exceeded 2.5 V, the FRF changed abruptly
(see section 2 in Fig. 2). Specifically, the 24 kHz resonance peak
disappeared and two new resonance peaks emerged, one around
34 kHz and the other around 20 kHz. These two resonance peaks
did not change significantly when the DC bias voltage was
increased to 3.5 V (see section 3 in Fig. 2), indicating the PZT dia-
phragm had migrated from the initial stable equilibrium position
to another stable equilibrium position.

In the second part of the experiment, the DC-biased voltage
was reduced and removed. The two resonance peaks remained at
around 33 kHz and 19 kHz. In other words, the PZT diaphragm
stayed in the second stable equilibrium position and did not return
to its initial stable equilibrium state. The measured FRF remained
the same even when the biased voltage was reversed (i.e., negative
DC bias). When the DC-biased voltage was reduced to �4 V, the
FRF experienced another abrupt change. The two resonance peaks
at 33 kHz and 19 kHz disappeared. Instead, one new resonance
peak appeared at 31 kHz (see section 4 in Fig. 2). The natural fre-
quency and FRF were not affected as the biased voltage was fur-
ther decreased (see section 5 in Fig. 2) or increased (see section 6
in Fig. 2), indicating the PZT diaphragm migrated from the sec-
ond stable equilibrium position to a third stable equilibrium
position.

In summary, the natural frequencies of the PZT diaphragm
bifurcate when the DC bias voltage exceeds a threshold. More-
over, unlike the snap-through observed in electrostatic actuators
or elastic structures, the trend of bifurcation is not reversible, sug-
gesting something unique occurred to the piezoelectric actuator.
The only tangible explanation is that the DC bias voltage has

created bending moments and in-plane stresses that migrate the
PZT diaphragm from one stable equilibrium to another via snap-
through, and the mechanism that kept it from going back to its
original state remains to be investigated. These experimental
results indicate that snap-through instability is highly possible for
a PZT, thin-film, diaphragm-type microactuator. A detailed math-
ematical model to analyze snap-through of piezoelectric thin
shells is critically needed.

3 Assumptions

Figure 3 shows the shallow shell model to be developed in this
paper. The shell model consists of three layers. The middle layer
2 is a piezoelectric layer, representing the PZT thin film. Layer 1
is an elastic layer representing all materials below the PZT thin
film, such as the bottom electrode, silicon nitride, silicon oxide,
and silicon. Layer 3 is an elastic layer representing all materials
above the PZT thin film, such as the top electrode and parylene
coating. Moreover, layer 3 consists of an inner electrode and an
outer electrode neighboring to each other. (For the PZT microac-
tuator in Fig. 1, the gap between the inner and outer electrodes is
20 lm.) For the rest of the paper, quantities related to the ith layer
are denoted by a superscript (i) or a subscript i. Furthermore, a
special notation �ðÞ is reserved for a reference surface, known as
the modulus-weighted midsurface �S, which will be defined later in
this section. Finally, quantities without any subscript or super-
script are related to the shell laminate, which consists of all three
layers.

In developing the shallow shell laminate model, the following
assumptions and definitions are made:

(1) The diaphragm of the PZT micro-actuator is warped due to
thermal stresses induced in the fabrication process. Rigor-
ously speaking, the micro-actuator should be modeled as a
thermally buckled plate. However, it is a difficult task to
estimate the induced thermal stresses. As a first attempt, the
micro-actuator is simplified as a shell laminate model
which is assumed to be initially stress free, and yet curved
with constant curvature Rx and Ry (spherical type). The
constant curvatures are used to account for the warping.

(2) For the PZT micro-actuator model in Fig. 3, the actuator
domain X consists of an inner electrode domain X– and an
outer electrode domain Xþ. Furthermore, X is considered

Fig. 2 Natural frequencies versus DC bias voltage. Some FRFs are plotted for the reference.
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as a rectangular domain defined as X ¼ fðx; yÞj0 � x �
a; 0 � y � bg and enclosed by an outer boundary @ �S,
where a and b represent the domain widths. By the
same token, X– is defined as X� ¼ fðx; yÞjxe

l � x � xe
r ;

ye
l � y � ye

rg, and enclosed by an inner boundary @X�,
where xe

l ; x
e
r ; y

e
l and ye

r represent the four vertices of the

domain. The outer electrode domain is then Xþ ¼ X� X�,

and is enclosed by @ �S and an inner boundary @Xþ , which
coincides with @X�.

(3) For each layer, there exists a local coordinate system CðiÞ

with orthogonal curvilinear coordinates ða1; a2; a
ðiÞ
3 Þ; see

Fig. 3(b). Furthermore, all three layers are shallow shells
satisfying the following assumptions [29].
(a) The orthogonal curvilinear surface coordinates

ða1; a2; a
ðiÞ
3 Þ can be replaced with the rectangular coor-

dinates ðx; y; zðiÞÞ; see Fig. 3(b).
(b) The Lam�e parameters of a shallow shell equal unity,

i.e., AðiÞx ¼ A
ðiÞ
y ¼ 1, where i¼ 1, 2, 3. Furthermore, the

radii of curvature of each layer are equal, i.e.,

R
ð1Þ
a ¼ R

ð2Þ
a ¼ R

ð3Þ
a , where a ¼ x; y. As a result, the dif-

ferential volume of each layer can be approximated by

dVðiÞ ¼ dxdydzðiÞ.
(4) A global coordinate system �C with coordinates ðx; y; �zÞ is

defined, where the x and y coordinates are identical to those

in the local coordinate systems CðiÞ, while the �z coordinate

is obtained by shifting the transverse coordinate zðiÞ; see

Fig. 3(b). �C is used to determine the modulus-weighted

midsurface �S, which serves as a reference to account for
the variation of modulus and Poisson’s ratio in each layer

across the thickness direction. The position of �S can be

determined by a standard moment analysis. Let �zðiÞ be the

distance from the midsurface of the ith layer to �C. Then

�z 0ð Þ ¼

X3

i

Ki�z
ið Þ

X3

i

Ki

(1)

where �zð0Þ is the vertical distance from �S to �C; Ki ¼
ðYðiÞhi=ð1� �2

i ÞÞ is the conventional membrane stiffness,

and YðiÞ, hi and �i are the Young’s modulus, thickness, and
Poisson’s ratio of the ith layer, respectively. It is convenient

to set the origin of the global coordinate system �C to coin-

cide with a reference point on �S such that the distance �zð0Þ

becomes zero. Consequently,

X3

i

Ki�z
ðiÞ ¼ 0 (2)

Moreover, the coordinate transformation between CðiÞ and
�C can be written as

zðiÞ ¼ �z � �zðiÞ (3)

(5) All three layers adopt a geometric nonlinear
strain–displacement relationship used in von Karman
plates. Moreover, the Donnell–Mushtari–Vlasov theory is
used to simplify the model, which is well justified by the
shell laminate being shallow [29]. The interested reader is
referred to Ref. [46] for the details of the Donnell-
Mushtari-Vlasov (DMV) theory.

(6) Love’s assumptions are made in the kinematic relations for
the shell laminate. Consequently, the following kinematic
relations can be obtained [34].
(a) Let u ¼ ðu; v;wÞT be the displacement vector of the

modulus-weighted midsurface, where u, v, and w
are the displacement in the x, y, and z directions,
respectively, and T indicates transpose. Also, let
b ¼ ðbx; by;bzÞT be the angular rotation vector, where
bx and by are the angles of rotation of the laminate, and
bz are the normal deformations of the laminate across
the thickness. Consider an arbitrary point P in the lami-
nate, located at ðx; y; �zÞ in the global coordinate system.
Let U be the displacement vector of P. Then

Uðx; y; �zÞ ¼ uðx; yÞ þ �zbðx; yÞ (4)

(b) Love’s assumptions imply that bz ¼ 0. Furthermore,
the laminate’s strains in the transverse direction vanish,
i.e., Szz ¼ Sxz ¼ Syz ¼ 0 [50]. As a result, the lami-
nate’s rotational angles b and curvatures j can be sim-
plified by the DMV theory, i.e.,

ba ¼ �
@w

@a
; jab ¼ �c

@2w

@ab
(5)

where a;b ¼ x; y, and c¼ 2 if a 6¼ b and c¼ 1
otherwise.

(c) Following the procedure in Ref. [34], the in-plane
strains of the laminate can be written in the global
coordinate system as

Fig. 3 Three-layer model of nonlinear shallow shells for the
thin-film microactuator: (a) description of individual layers, the

modulus-weighted midsurface �S (– – –), and geometry and (b)

local coordinate system C(i) of the ith layer and global coordi-

nate system �C
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Sab ¼ S0
ab þ �zjab (6)

where a; b ¼ x; y, S are the laminate’s in-plane strains
and S0 are the membrane strains of the modulus-
weighted mid-surface. To transform the laminate’s in-
plane strains to the ith layer’s local coordinate system,
Eq. (3) is substituted into Eq. (6), leading to

S
ðiÞ
ab ¼ S

0ðiÞ
ab þ zðiÞjab (7)

where a; b ¼ x; y and SðiÞ and S0ðiÞ are the ith layer’s in-
plane strains and membrane strains of the midsurface,
respectively. Finally, the normal stresses r33 are negli-
gible in all three layers.

(7) The electric potential /ðx; y; zð2Þ; tÞ inside the piezoelectric
layer Sð2Þ is assumed to vary linearly across the thickness
direction. In addition, the in-plane electric fields Ex and Ey

are neglected and only the transverse electric field Ez is
considered.

The shell laminate model is developed using a” local” to” glob-
al” procedure. Formulas of individual layers are derived in each
local coordinate system CðiÞ and in terms of quantities associated
with each layer SðiÞ, such as the membrane strains S0ðiÞ of the ith
layer (layer level). The shell laminate is then obtained by assem-
bling individual layers and transforming all the quantities to the
modulus-weighted midsurface �S in the global coordinate system
�C (laminate level).

4 Kinematics and Electric Fields

In this section, the kinematic relations in the layer level are
transformed to the global coordinate system �C, and then added
together to derive those in the laminate level.

4.1 Kinematic Relations. After substituting the coordinate
transformation (3) and zðiÞ ¼ 0 into Eq. (6), the membrane strains
and curvatures of the ith layer are written in the global coordinate
system �C as

sðiÞ ¼ Tis (8)

where sðiÞ ¼ ðS0ðiÞ
xx ; S

0ðiÞ
yy ; S

0ðiÞ
xy ;jxx;jyy; jxyÞT and s ¼ ðS0

xx; S
0
yy; S

0
xy;

jxx; jyy; jxyÞT are the strain vectors of the ith layer and the lami-
nate, respectively, and Ti is the coordinate transformation matrix

from �C to CðiÞ, defined as

Ti ¼ I �zðiÞI
0 I

� �
(9)

where I and 0 are a 3� 3 identity and zero matrix, respectively.
Tzou and Bao [34] derived von Karman-type nonlinear strain–

displacement relations for thin piezoelectric shells with large trans-
verse deflections w. These nonlinear strain–displacement relations
can be simplified by the DMV theory [29]. As a result, the nonlinear
membrane strain–displacement relations of the laminate are written as

s ¼ ½Bl þ Bnl�u (10)

In Eq. (10)

Bl ¼

@ •ð Þ
@x

0
•ð Þ
@y

0 0 0

0
@ •ð Þ
@y

@ •ð Þ
@x

0 0 0

•ð Þ
Rx

•ð Þ
Ry

0 � @
2 •ð Þ
@x2

� @
2 •ð Þ
@y2

� @
2 •ð Þ
@x@y

2
666666664

3
777777775

T

(11)

and

Bnl ¼

0 0 0 0 0 0

0 0 0 0 0 0

1

2

@ •ð Þ
@x

@ •ð Þ
@x

1

2

@ •ð Þ
@y

@ •ð Þ
@y

@ •ð Þ
@x

@ •ð Þ
@y

0 0 0

2
66664

3
77775

T

(12)

are linear and nonlinear differential operators, respectively.

4.2 Electric Fields. Since the top and bottom layers include
electrodes, the transverse electric field appears only inside the pie-

zoelectric layer Sð2Þ. Furthermore, the top layer Sð3Þ consists of an
inner electrode and an outer electrode (cf. Fig. 1 or Fig. 3(a)).

Therefore, the electric potential /ðx; y; zð2Þ; tÞ in layer Sð2Þ is a
union of the electric potentials established by the inner and outer
electrodes, i.e.,

/ðx; y; zð2Þ; tÞ ¼ /�ðx; y; zð2Þ; tÞ [ /þðx; y; zð2Þ; tÞ (13)

where the superscripts� andþ refer to the inner and outer electro-
des, respectively. Based on Assumption 7, the electric potential
varies linearly across the thickness direction. Therefore, the trans-
verse electric field is

E 2ð Þ
z ¼ �

D/�

h2

[ D/þ

h2

� �
(14)

where D/ is the electric bias voltage between the top and bottom
electrodes.

5 Constitutive Equations

In this section, a generalized form of constitutive equations of
the piezoelectric and elastic layers will be obtained in terms of
stress and moment resultants as follows.

5.1 Piezoelectric and Elastic Layers. According to Ref. [51]
and Assumption 6(b) and Assumption 7, the constitutive equations
for the piezoelectric layer with zð2Þ being the poling direction take
the form of

r 2ð Þ
xx

r 2ð Þ
yy

r 2ð Þ
xy

0
BBB@

1
CCCA ¼

Y 2ð Þ

1� �2
2

�2Y 2ð Þ

1� �2
2

0

�2Y 2ð Þ

1� �2
2

Y 2ð Þ

1� �2
2

0

0 0
Y 2ð Þ

2 1þ �2ð Þ

2
66666666664

3
77777777775

S 2ð Þ
xx

S 2ð Þ
yy

S 2ð Þ
xy

0
BBB@

1
CCCA

�
e31E 2ð Þ

z

e31E 2ð Þ
z

0

0
BB@

1
CCA (15)

where Yð2Þ, �2, and e31 are the Young’s modulus, Poisson’s ratio,
and piezoelectric constant of the piezoelectric layer, respectively,
and

Dz ¼ e31ðSð2Þxx þ Sð2Þyy Þ þ �33Eð2Þz (16)

where Dz is the electric displacement in the thickness direction,
e31 is the piezoelectric constant, and e33 is the dielectric constant.

The elastic layers Sð1Þ and Sð3Þ are assumed to be isotropic. Con-
sequently, the constitutive equations take the form of
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r ið Þ
xx

r ið Þ
yy

r ið Þ
xy

0
BBB@

1
CCCA ¼

Y ið Þ

1� �2
i

�iY
ið Þ

1� �2
i

0

�iY
ið Þ

1� �2
i

Y ið Þ

1� �2
i

0

0 0
Y ið Þ

2 1þ �ið Þ

2
66666666664

3
77777777775

S ið Þ
xx

S ið Þ
yy

S ið Þ
xy

0
BBB@

1
CCCA; i ¼ 1; 3

(17)

For the ith layer, let us define an in-plane stiffness matrix K̂i

and bending rigidity matrix D̂i as

K̂i ¼

Ki �iKi 0

�iKi Ki 0

0 0
1� �ið ÞKi

2

2
6664

3
7775;

D̂i ¼

Di �iDi 0

�iDi Di 0

0 0
1� �ið ÞDi

2

2
6664

3
7775

(18)

where Ki ¼ ðYðiÞhi=ð1� �2
i ÞÞ and Di ¼ ðYðiÞh3

i =12ð1� �2
i ÞÞ are

the conventional membrane stiffness and bending rigidity of the
ith layer respectively. With Eq. (18), let us also define ~Ki as a
layer stiffness matrix for the ith layer, consisting of

~Ki ¼ K̂i 0

0 D̂i

" #
(19)

After substituting Eq. (7) into the constitutive equations (15)
and (17) and integrating them from �hi=2 to hi=2 in the local
coordinate system ðx; y; zðiÞÞ, the constitutive equations can be
expressed in terms of stress and moment resultants, and the layer
stiffness matrix (19). For the elastic layers

fmðiÞ ¼ ~Kis
ðiÞ; i ¼ 1; 3 (20)

where fmðiÞ ¼ ðNmðiÞ
xx ;N

mðiÞ
yy ;N

mðiÞ
xy ;MmðiÞ

xx ;M
mðiÞ
yy ;M

mðiÞ
xy ÞT is a force

(per unit length) vector consisting of the mechanical stress and
moment resultants of the elastic layers, and sðiÞ is the strain vector
of the ith layer defined in Eq. (8). For the piezoelectric layer

fð2Þ ¼ ~K2sð2Þ � feð2Þ ¼ fmð2Þ � feð2Þ (21)

where fð2Þ ¼ ðNð2Þxx ;N
ð2Þ
yy ;N

ð2Þ
xy ;Mð2Þxx ;M

ð2Þ
yy ;M

ð2Þ
xy ÞT is a force (per

unit length) vector consisting of the stress and moment resultants

of the piezoelectric layer. Note that fð2Þ is composed of fmð2Þ, the
mechanical stress and moment resultants obtained under short-

circuit condition, and fe ¼ ðNe
xx;N

e
yy; 0; 0; 0; 0Þ

T
, the electrical

stress resultants. Note that the electric moment resultants Me
xx ¼

Me
yy ¼ 0 because the electric field (14) is symmetric with respect

to the midsurface of the piezoelectric layer and the integration
was carried out from �h2=2 to h2=2. Also, note that the super-
scripts e and m indicate electrical and mechanical components,

respectively. Finally, fe ¼ fe� [ feþ is the union of the electrical
stress resultants of the inner and outer electrode domains, which
individually can be expressed in terms of D/ as follows:

fe� ¼ e31ð�D/�;�D/�; 0; 0; 0; 0ÞT (22)

To obtain feþ for the outer electrode, one simply needs to replace
the superscript� in Eq. (22) with þ.

5.2 Laminate Boundary Forces and Moments. The bound-
ary forces and moments for the entire shell laminate are derived
as follows: First, in the current shell formulation, transverse shear
forces V(i) of each layer can be completely determined by
the in-pane stress and moment resultants N(i) and M(i) defined in
Eqs. (20) and (21) because the transverse strains Sxz, Syz, and Szz

are assumed to be zero [34]. In other words

V ið Þ
az ¼ Vm ið Þ

az � Ve ið Þ
az

¼ Qm ið Þ
az þ

@Mm ið Þ
ab

@b
� Nm ið Þ

aa ba � Nm ið Þ
ab bb

" #
� �Ne ið Þ

aa ba

h i
(23)

where a;b ¼ x; y and a 6¼ b, and QmðiÞ are defined as

Qm ið Þ
az ¼

@Mm ið Þ
aa

@a
þ
@Mm ið Þ

ab

@b
(24)

where a; b ¼ x; y and a 6¼ b. Second, the coordinate transforma-
tion matrix Ti defined in Eq. (9) is used to transform individual
stress and moment resultants N(i) and M(i), and shear forces V (i) to
the global coordinate system. Finally, the shear forces and stress
and moment resultants of each layer are summed over all three

layers with respect to the modulus-weighted midsurface �S to
obtain the total boundary forces N, moments M, and shear forces
V at the laminate level. As a result,

Nab ¼
X3

i¼1

N
mðiÞ
ab � N

eð2Þ
ab (25)

where a;b ¼ x; y. Note that N
eð2Þ
ab ¼ 0 when a 6¼ b. Furthermore,

Maa ¼
X3

i¼1

½MmðiÞ
aa þ NmðiÞ

aa �zðiÞ� � Neð2Þ
aa �zð2Þ (26)

where a ¼ x; y and N�z is the moment created by the in-plane stress
resultants due to the moment arm �z. Moreover

Vaz ¼
X3

i¼1

VmðiÞ
az � Veð2Þ

az (27)

where a ¼ x; y. Finally,

Vm
ab ¼

X3

i¼1

Nm ið Þ
ab þ

Mm ið Þ
ab

Rb

" #
(28)

where a;b ¼ x; y and a 6¼ b.

6 Variation of Potential and Kinetic Energies and

Virtual Work

6.1 Variation of Electric Enthalpy and Elastic Strain
Energy. For the piezoelectric layer Sð2Þ, the variation of the elec-
tric enthalpy dH is [51]

dH ¼
ð

V

½rabdSab � DzdEz�dV; a; b ¼ x; y (29)

where Einstein’s summation notation is used for a and b. (Note
that the superscript (2) is dropped in Eq. (29), because only the
piezoelectric layer has electric enthalpy density.) For the elastic
layers Sð1Þ and Sð3Þ, the variation of the elastic strain energy den-
sity dU is
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dUðiÞ ¼
ð

VðiÞ
rðiÞabdS

ðiÞ
abdVðiÞ; i ¼ 1; 3 (30)

The variation of the total potential energy of the shell laminate
is derived as follows: First, the constitutive equations (15)–(17)
are substituted into Eqs. (29) and (30) and integrated in the thick-
ness direction from �hi=2 to hi=2 in the individual local coordi-
nate systems. Second, the constitutive equations in the layer level
(cf. Eqs. (20) and (21)) are used to express the potential energy in

terms of the layer strain vector sðiÞ. Third, the potential energy is
transformed to the global coordinate system and thus expressed in
terms of s, the laminate strain vector of the shell laminate, via
Eq. (8). Fourth, the nonlinear strain–displacement relations (10)
are used to express the potential energy in terms of the displace-
ment vector u of the modulus-weighted midsurface. Finally, dH,

dUð1Þ, and dUð3Þ are summed together to obtain the potential
energy of the laminated shell. In other words

dV½u;D/� ¼
ð

X
duTðBT

l þ BT
nlÞKðBl þ BnlÞudA

�
ð

X
duTðBT

l þ BT
nlÞTT

2 fedA

þdD/e31

ð
X
½1TT2ðBl þ BnlÞu�dA� dD/CPD/

(31)

where 1 ¼ ð1; 1; 0; 0; 0; 0ÞT; Cp ¼ ðe33Vð2Þ=h2
2Þ is the equivalent

capacitance of the piezoelectric layer, and K is the laminate stiff-
ness matrix, which is obtained by applying coordinate transforma-
tion Ti in Eq. (9) to each layer stiffness matrix ~Ki defined in
Eq. (19), and summing over all three layers, i.e.,

K ¼
X3

i¼1

TT
i

~KiTi ¼
X3

i¼1

K̂i �zðiÞK̂i

�zðiÞK̂i ð�zðiÞÞ2K̂i þ D̂i

" #
(32)

After a variational process, Eq. (31) will lead to a set of electro-
mechanical equations of mechanical motion that governs the dis-
placement vector u and a set of charge equations of electrostatics
that governs the electric potential D/. Since the shell laminate is an
actuator, the electric field is prescribed. As a result, the electric
potential D/ is no longer a degree-of-freedom (DOF) but a control
variable, rendering dD/ ¼ 0. Therefore, only the first two integrals
in Eq. (31) will be considered throughout the rest of the paper.

6.2 Variation of Kinetic Energy. When formulating shallow
shells, in-plane and rotary inertia effects are often neglected
[28,45,52]. The negligible rotary inertia can be accounted for by
the DMV theory [29]. Furthermore, Tzuo and Bao [34] asserted
that the negligible in-plane inertia is due to the DMV theory. As a
result, the kinetic energies of the ith layer can be written as

dTðiÞ ¼ qihi

ð
X
d _wðiÞ _wðiÞdA (33)

where qi is the mass density of the ith layer. In Eq. (33), the opera-

tor _ð Þ denotes the time derivative. It follows that the total kinetic
energy of the shell model is simply the summation of the kinetic
energy of all three layers, i.e.,

dT½w� ¼
X3

i¼1

dTðiÞ (34)

6.3 Virtual Work Along Boundaries. Let us define ub ¼
ðun; ut;w;bnÞT as a vector consisting of the displacement and
slope components in a local n� t coordinate system at the outer

boundary @ �S (see Fig. 4), where n and t denote the outward nor-
mal and tangential direction at a boundary. For the rectangular
domain X ¼ fðx; yÞj0 � x � a; 0 � y � bg considered in this
paper, ub can be written as [51]

x ¼ 0; a : ub ¼ ð�u;�v;w;�bxÞT; ðu; v;w;bxÞT

y ¼ 0; b : ub ¼ ð�v; u;w;�byÞT; ðv;�u;w;byÞT
(35)

By the same token, let us define u�b and uþb as the boundary dis-
placement and slope components in the individual n� t coordinate
systems at @X� and @Xþ, respectively. Comparing Figs. 3 and 4,
it can be seen that the inner electrode boundary @X� has the same

normal and tangential direction as @ �S, and thus u�b shares the
same sign convention as ub. Therefore, to obtain u�b at x ¼ xe

l ; x
e
r

and y ¼ ye
l ; y

e
r , one simply needs to replace the components in

Eq. (35) with equivalent counterparts of superscripts �. The nor-
mal and tangential directions along @Xþ, on the other hand, have
an opposite sign. Therefore, uþb ¼ �u�b except for wþ ¼ w� since
the transverse direction is the same.

Similarly, let us define fb ¼ fm
b � fe

b ¼ ðNm
nn;N

m
nt;V

m
n ;M

m
nnÞ

T �
ðNe

nn;N
e
nt;V

e
n;M

e
nnÞ

T
as a vector consisting of the mechanical and

electrical force and moment components in the local n� t coordi-
nate system along @ �S. Then, according to Ref. [51]

x ¼ 0; a : fb ¼ ðNxx;V
m
xy;�Vxz;MxxÞT; ðNxx;V

m
xy;Vxz;MxxÞT

y ¼ 0; b : fb ¼ ðNyy;V
m
yx;�Vyz;MyyÞT; ðNyy;V

m
yx;Vyz;MyyÞT

(36)

By the same token, let us define f�b and fþb as the boundary force
and moment components in the individual n� t coordinate sys-
tems at @X� and @Xþ, respectively. Again referred to Fig. 4, the
boundary forces and moments components along @X� and @Xþ

are the same in their individual local n� t coordinate systems.

Therefore, fþb ¼ f�b except for Vþxz ¼ �V�xz and Vþyz ¼ �V�yz.

Finally, the virtual work along @ �S is written as

dW ¼
ð
@ �S

duT
b fb (37)

The virtual work along @X� or @Xþ can be obtained by simply
replacing @ �S, ub, and fb in Eq. (37) with @X� or @Xþ; u�b or uþb ,
and f�b or fþb .

7 Variational Formulation and Discretization

Assuming that no external forces are present and the electric
potential D/ is prescribed, a variational formulation (with respect
to time t) for the piezoelectric shell laminate leads to

Fig. 4 Sign convention of forces and moments at one bound-
ary between the inner electrode and outer electrode domains:
(a) outer electrode domain X1 and (b) inner electrode domain
X2. Note that n and t denote the normal and tangential direc-
tions at a boundary.
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dT � dV ¼
ð

X
duTL½u; _w;D/�dA

�
ð
@X�
ðdu�b Þ

Tðf�b � fþb ÞdS�
ð
@ �S

duT
b fbdS (38)

In Eq. (38), dT and dV are the variation of the kinetic and potential
energies of the laminated shell (cf. Eqs. (31) and (34)), and super-
scriptsþ and� indicate quantities at the boundary @Xþ and @X�

Moreover, the nonlinear operator L½u; _wD/� governs the motion
of the shell laminate. Ideally, when the Hamilton principleÐ t1

t0
ðdT � dVÞdt ¼ 0 is applied, Eq. (38) leads to a set of equations

of motion with boundary conditions

L½u; _w;D/� ¼ 0 on X; ub ¼ 0 or fb ¼ 0 at @ �S (39)

Furthermore, since @X� coincide with @Xþ, a set of continuity
equations (in displacements and slopes) and equilibrium equations
(in forces and moments) need to be additionally satisfied

u�b ¼ �uþb ; expect for wþ ¼ w�;

f�b � fþb ¼ 0; expect for V�n ¼ �Vþn at @X�
(40)

To discretize (39), for example, using Galerkin’s method, one
could assume

u� ¼
XN

k¼1

w�k ðX�Þq�k ðtÞ; on X�;

uþ ¼
XN

k¼1

wþk ðXþÞqþk ðtÞ; on Xþ
(41)

where N is the number of terms retained, w�k ðX�Þ and wþk ðXþÞ
are two sets of shape functions defined on X� and X�, respec-
tively, and q�k ðtÞ and qþk ðtÞ are the generalized coordinates.

In the discretization process, a major challenge is to choose
proper shape functions that satisfy the continuity and equilibrium

equations defined in Eq. (40). Finding such w�k and wþk that
exactly satisfy Eq. (40) can be formidable because it involves 16

nonlinear algebraic equations (fþb ¼ f�b has four equations on each
side of @X�). As an alternative, one may satisfy (40) in a weak
form, i.e., ð

@X�
ðdu�b Þ

Tðf�b � fþb ÞdS ¼ 0 (42)

and thus resort to the Rayleigh–Ritz method (lieu of Galerkin’s
method) by seeking a set of admissible functions and particular
functions

u ¼
XN

k¼1

wkðXÞqkðtÞ þ weðXÞqeðtÞ (43)

to discretize (38) over the entire laminate domain X. The admis-
sible functions wk serve to satisfy the essential boundary condi-
tions ub at @ �S and the particular function we to satisfy the weak
form in Eq. (42). The particular function we is similar to a partic-
ular solution that is used to satisfy inhomogeneous essential
boundary conditions in the Rayleigh-Ritz method (see Ref. [53]).
For Donnell’s and Novozhilov’s nonlinear elastic shell models,
such a function can be found in Amabili’s work [54], which was
added to admissible displacement fields in order to exactly sat-
isfy the classical simply supported boundary conditions. How-
ever, to the best of the authors’ knowledge, such a function to
satisfy Eq. (42) for piezoelectric shell laminates is still missing.
Later, in Sec. 8, we will present such a particular function that
partially satisfies Eq. (42).

When using admissible functions to perform discretization, the
virtual work associated with natural boundary conditions has to be
included in the process since they are not satisfied by the admissi-
ble functions [53]. As a result, the following variational formula-
tion will be used to derive the equation of motion for the shell
laminate

dT � dV þ
ð
@X�
ðdu�b Þ

Tðf�b � fþb ÞdSþ
ð
@ �S

duT
b fbdS ¼ 0 (44)

8 Shape Function Expansion

To find a particular function that satisfies the weak form in
Eq. (42), the displacement field of the shell laminate is assumed to
be of u ¼ um þ ue, where

um ¼
XI

i¼1

XJ

j¼1

/iðxÞwjðyÞ
pijðtÞ
qijðtÞ
rijðtÞ

0
B@

1
CA

ue ¼
XI

i¼1

XJ

j¼1

lðxÞwjðyÞpe
j ðtÞ

hðyÞ/iðxÞqe
i ðtÞ

0

0
B@

1
CA

(45)

In Eq. (45), pijðtÞ; qijðtÞ, and rijðtÞ are the generalized coordinates,
and /i and wj are orthogonal, admissible functions that satisfy the

essential boundary conditions and orthogonality
Ð a

0
/i/j ¼

dij

Ð a
0

/i/j and
Ð b

0
wiwj ¼ dij

Ð b
0

wiwj, where dij is the Kronecker

delta. Furthermore, /i and wj are assumed to be sufficiently
smooth such that their derivatives are continuous functions (so are
the corresponding strains). The above assumptions are well justi-
fied by ample research results of elastic shell studies. For exam-
ple, Dickinson and Di Blasio [55] proposed a recursive formula
based on the Gram–Schmidt process to generate successive
orthogonal polynomials that satisfy classical plate boundary con-
ditions, such as SS-SS (simply supported on all sides) and C-C
(clamped on all sides). Also, lðxÞ and hðyÞ are assumed to be step-
wise functions that satisfy

@l�

@x
� @l

þ

@x
¼ 1;

@h�

@y
� @h

þ

@y
¼ 1 (46)

and pe
j and qe

i are their generalized coordinates.
After substituting Eq. (45) into the weak form in Eq. (42), pe

j
and qe

i can be determined as follows: First, let us focus on the side
x ¼ xe

r . After substituting Eq. (45) into Eqs. (42) through (10),
(20), (21), and (25)–(28), the virtual work at x ¼ xe

r can be written
in terms of the particular displacement function ue and electric
potential D/ as follows:ð
@X�

du�bð ÞT f�b � fþb
� �

dS

¼
ðye

r

ye
l

du K
@ue�

@x
� @ueþ

@x

� �
þ e31 D/� � D/þ

� �� �
dy

�
ðye

r

ye
l

dwbx K
@ue�

@x
� @ueþ

@x

� �
þ e31 D/� � D/þ

� �� �
dy

þ
ðye

r

ye
l

dbx�z
2ð Þe31 D/� � D/þ

� �
dy (47)

where K ¼
P3

i¼1 Ki. Note that the integrals are evaluated at x ¼
xe

r and that um, vm, w, by, jxx, jyy, and jxy do not appear in Eq.
(47) because they are assumed to be continuous across x ¼ xe

r .
Also, in deriving Eq. (47), Eq. (2) has been used to eliminate the
membrane strains S0

xx from the last integral.
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When D/� 6¼ D/þ; ð@ue=@xÞ needs to be a stepwise function
that has a discontinuity at x ¼ xe

r for the first two terms in Eq. (47)
to vanish. This is the reason why lðxÞ and hðyÞ are assumed to be
the stepwise functions defined in Eq. (46). Incorporating similar
stepwise functions to satisfy the continuity and compatibility
equations at the boundaries of partial and concatenated piezoelec-
tric beam laminates can also be found in Refs. [56] and [57],
respectively. Substitution of Eq. (46) into Eq. (47) leads toð
@X�
ðdu�b Þ

Tðf�b � fþb ÞdS

¼
XI

i¼1

XJ

j;k¼1

dpij/i

ðye
r

ye
l

½Kwjwkpe
k þ e31ðD/� � D/þÞ�dy

þ
XI

i¼1

XJ

j;k¼1

drij/i

ðye
r

ye
l

bx½�Kwjwkpe
k � e31ðD/� � D/þÞ�dy

þ
ðye

r

ye
l

dbx�z
ð2Þe31ðD/� � D/þÞdy (48)

Note that the integrals are evaluated at x ¼ xe
r . Finally, equating

the first or second integral in Eq. (48) to zero and making use of
orthogonality, one can derive pe

j as

pe
j tð Þ ¼ � e31

K
D/ tð Þ� � D/ tð Þþ
� 	

ðye
r

ye
l

wj yð Þdy

ðb

0

wj yð Þ
� 	2dy

(49)

The same analysis can be done to y ¼ ye
r or y ¼ ye

l to derive qe
i . In

other words

qe
i tð Þ ¼ � e31

K
D/ tð Þ� � D/ tð Þþ
� 	

ðxe
r

xe
l

/i xð Þdxða

0

/i xð Þ½ �2dx

(50)

Determination of the final forms of lðxÞ and hðyÞ depends on
the boundary condition at @ �S, which will be demonstrated in
Sec. 9.

9 A Reference System

To demonstrate how to discretize Eq. (44), we will consider,
for the rest of the paper, a reference system where the shell lami-
nate is subject to a set of simply supported boundary conditions.
We will use the reference system to study its snap-through phe-
nomena for the rest of the paper. For the reference system, the
simply supported boundary conditions at @ �S are

u ¼ 0; Mnn ¼ 0 at @ �S (51)

where u ¼ ðu; v;wÞT is the displacement vector of the modulus-

weighted midsurface �S, and Mnn is the normal moment defined in
Eq. (36). Based on these boundary conditions, the shape functions
/iðxÞ ¼ sinðipx=aÞ and wjðyÞ ¼ sinðjpy=bÞ are assumed. Further-

more, with the boundary conditions u ¼ v ¼ 0 at x ¼ 0; a and y ¼
0; b; lðxÞ and hðyÞ can be determined from Eq. (46) as

l xð Þ ¼

� xe
r � xe

lð Þ
x

a
; 0 � x � xe

l

a� xe
r þ xe

lð Þ
x

a
� xe

l ; xe
l < x < xe

r

� xe
r � xe

lð Þ
x

a
� 1

� �
; xe

r � x � a

8>>>>>><
>>>>>>:

(52)

and

h yð Þ ¼

� ye
r � ye

lð Þ
y

b
; 0 � y � ye

l

b� ye
r þ ye

lð Þ
y

b
� ye

l ; ye
l < y < ye

r

� ye
r � ye

lð Þ
y

b
� 1

� �
; ye

r � y � b

8>>>>>><
>>>>>>:

(53)

Provided that the shape functions lðxÞ and hðyÞ nullify the first
two terms in Eq. (47), the weak form of equilibrium equations in
Eq. (44) can be reduced toð

@X�
ðdu�b Þ

Tðf�b � fþb ÞdS

¼ �½Neð2Þ�
xx � Neð2Þþ

xx ��zð2Þ
ðye

r

ye
l

ðdbxjx¼xe
r
� dbxjx¼xe

l
Þdy

�½Neð2Þ�
yy � Neð2Þþ

yy ��zð2Þ
ðxe

r

xe
l

ðdbyjy¼ye
r
� dbyjy¼ye

l
Þdx (54)

Also, the simply supported boundary conditions require the vir-
tual work at @ �S in Eq. (38) to be

ð
@ �S

duT
b fbdS ¼ �Neþ

xx �zð2Þ
ðb

0

ðdbð2Þx jx¼a � dbð2Þx jx¼0Þdy

�Neþ
yy �zð2Þ

ða

0

ðdbð2Þy jy¼b � dbð2Þy jy¼0Þdx (55)

As a final remark, the reference system is not chosen to model
the microactuator that yields the result in Fig. 2. Due to uneven
etch rates, exact diaphragm geometry of the microactuator is
rather complex. It has a uniform circular membrane area at the
center but a slightly tapered residual silicon region between the
circular membrane and the rectangular anchor; see Fig. 6 in
Ref. [49]. The piezoelectric thin film is also not uniform. The
inner electrode is not rectangular because it needs to extend to
outside for electric connection; the outer electrode is not a rectan-
gular ring, because it needs to give way to the inner electrode con-
nection; see Fig. 9 in Ref. [33]. All things considered, it is
impractical to model the real microactuator tested. Instead, the
reference system is chosen to study snap through for two reasons.
First, elastic shells on rectangular domains with simply supported
boundary conditions are better studied for snap-through phenom-
ena. Second, shape functions wkðXÞ to discretize the equation of
motion are easier to select.

10 Discretized Equation of Motion

After substituting the shape function expansion in Eq. (45) into
the variational formulation (44) with the virtual work ((54) and
(55)) and carrying out the variation, the following discretized
equations of motion can be derived:

XI

i¼1

XJ

j¼1

Lpij
½u; v;w;D/� ¼ 0;

XI

i¼1

XJ

j¼1

Lqij
½u; v;w;D/� ¼ 0

XI

i¼1

XJ

j¼1

Mij€rij þ ~Lrij
½u; v;w;D/� ¼ 0 (56)

where Mij ¼ m
PI

k¼1

PJ
l¼1

Ð
X/iwj/kwldA and m is the mass per

unit area of the shell laminate. Definition of the nonlinear opera-

tors Lpij
½u; v;w;D/�; Lqij

½u; v;w;D/�, and ~Lrij
½u; v;w;D/� is pro-

vided in Appendix.
Note that pkl and qkl in Lpij

½u; v;w;D/� ¼ 0 and
Lqij
½u; v;w;D/� ¼ 0 linearly depend on each other; see Eqs. (A1),

(A2) and (A15) in the Appendix. Thus, Lpij
½u; v;w;D/� ¼ 0 and
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Lqij
½u; v;w;D/� ¼ 0 can be solved for pkl and qkl. Substitution of

the solutions into ~Lrij
½u; v;w;D/� ¼ 0 can eliminate pkl and qkl

from it, leading to a set of equations consisting of only r0s. As a
result, the definitive equations of motion are rewritten as

XI

i¼1

XJ

j¼1

Mij€rij þ Lrij
½u; v;w;D/� ¼ 0 (57)

In Eq. (57)

Lrij
½u; v;w;D/�

¼
�XI

k¼1

XJ

l¼1

Kijkl þ
XI

k;m¼1

XJ

l;n¼1

Snle
ijklmnðD/� � D/þÞ

þ
XI

k¼1

XJ

l¼1

Snleþ
ijkl D/þ þ

XI

k¼1

XJ

l¼1

Snle�
ijkl D/�

�
rkl

þ
XI

k;m¼1

XJ

l;n¼1

Qnl
ijklmnrklrmn þ

XI

k;m;o¼1

XJ

l;n;p¼1

Cnl
ijklmnoprklrmnrop

þ
XI

k¼1

XJ

l¼1

Fe
ijklðD/� � D/þÞ þ Feþ

ij D/þ þ Fe�
ij D/�

� Be
ijðD/� � D/þÞ � Beþ

ij D/þ (58)

where K is the linear stiffness, Q is the quadratic stiffness, C is the
cubic stiffness, Snle is the nonlinear softening or stiffening coeffi-
cient (depending on the signs of D/� and D/þ) due to the electric
potential, F is the electric force coefficient due to the converse
piezoelectric effect, and B is the electric force coefficient due to
boundary conditions. The solution procedure to derive Eq. (58)
and definition of all coefficients in Eq. (58) can be found in
Appendix.

There are two things worth noting in Eq. (58). First, due to the
von Karman-type strain displacement relation, the converse piezo-
electric effect leads to nonlinear softening or stiffening effect as

manifested by the coefficients Snle� and Snleþ. In other words, an
applied voltage can change the stiffness of the shell laminate. Fur-
thermore, these coefficients would vanish if the elastic properties
of the piezoelectric layer had been ignored, which was assumed in
many studies for piezoelectric smart structures, e.g., in Refs. [44],
[46], and [47]. Second, it is also worth noting that the presence of

the inner and outer electrodes has a similar effect with Snle� and

Snleþ, as manifested by the coefficients Snle. As seen in Eq. (58), if
the electric potentials on the inner and outer electrodes are equal,

or D/� ¼ D/þ, i.e., the shell laminate is uniformly actuated, the
Snle terms will then vanish. In other words, the coefficient Snle

indicates a specialty of nonuniform or distributed actuation of pie-
zoelectric shells or plates, which largely remains unexplored.

11 Conclusions

In this paper, we reported the experimental findings of a PZT
thin-film microactuator that was submerged in water. We have
also developed a mathematical model hoping to qualitatively
explain the experimental findings. With the presentations above,
we reach the following conclusions.

(1) Experimental results indicate that natural frequencies of the
microactuator bifurcate when the applied DC bias voltage
reaches specific thresholds. The bifurcation indicates a
change of local stiffness and thus a migration between sta-
ble equilibrium states of the microactuator. Furthermore,
the bifurcation is irreversible, unlike those seen in electro-
static actuators or elastic curve structures. A snap-through
phenomenon specific to nonlinear piezoelectric actuators is
hypothesized to facilitate the migration when the threshold
DC bias voltage is reached.

(2) To explore the possibility of snap-through induced by a DC
bias voltage, we develop a multilayered, asymmetrically
laminated, doubly curved, geometrically nonlinear, shallow
shell model. The model is applied to a rectangular domain
with simply boundary conditions and two partial electrodes,
specifically, an inner electrode and an outer electrode. Dis-
cretized equations of motion are derived via a variational
formulation and assumed shapes of displacement fields.

(3) The geometrical nonlinearity couples in-plane displace-
ments with transverse displacement in the derived equa-
tions of motion. In-plane equation of motion is algebraic,
implying that in-plane DOFs can be represented in terms of
transverse DOFs. Transverse equations of motion are
differential equations involving nonlinear terms from both
in-plane and transverse DOFs. After elimination of the in-
plane DOFs, the resulting equations of motion are coupled
second-order differential equations with linear, quadratic,
and cubic nonlinear restoring forces.

(4) The presence of partial electrodes will lead to a softening
or stiffening effect that is similar to what can be observed
in nonlinear piezoelectric actuators involved with large
deformation. Also, it will lead to a discontinuous electric
field, if the applied voltage on the two partial electrodes is
not the same. The discontinuity will lead to a discontinuous
in-plane strain field across the boundary of the electrodes.
The strain discontinuity must be compensated via specific
functions ueðx; y; tÞ in the displacement expansion to ensure
proper convergence of the potential energy. The discontinu-
ity will also lead to residual virtual work along the elec-
trode boundaries that needs to be incorporated in the
derivation of the discretized equation of motion.
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Appendix

In Eq. (56)

Lpij
½u; v;w;D/�

¼
XI

k¼1

XJ

l¼1

Aijklpkl þ
XI

k¼1

XJ

l¼1

Dijklqkl þ
XI

k¼1

XJ

l¼1

Eijklrkl

þ
XI

k;m¼1

XJ

l;n¼1

A1nl
ijklmnrklrmn þ

XI

k¼1

XJ

l¼1

A1e
ijklðD/� � D/þÞ

�A1eþ
ij D/þ � A1e�

ij D/� (A1)

and

Lqij
½u; v;w;D/�

¼
XI

k¼1

XJ

l¼1

Dklijpkl þ
XI

k¼1

XJ

l¼1

Bijklqkl þ
XI

k¼1

XJ

l¼1

Fijklrkl

þ
XI

k;m¼1

XJ

l;n¼1

A2nl
ijklmnrklrmn þ

XI

k¼1

XJ

l¼1

A2e
ijklðD/� � D/þÞ

�A2eþ
ij D/þ � A2e�

ij D/� (A2)
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and

~Lrij
½u; v;w;D/�

¼
�XI

k¼1

XJ

l¼1

Cijkl þ
XI

k;m¼1

XJ

l:n¼1

A1nle
ijklmnðD/� � D/þÞ

�
XI

k¼1

XJ

l¼1

A2nleþ
ijkl D/þ �

XI

k¼1

XJ

l¼1

A2nle�
ijkl D/�

�
rkl

þ
XI

k;m¼1

XJ

l;n¼1

A3nl
ijklmnrklrmn þ

XI

k;m¼1

XJ

l;n¼1

B1nl
ijklmnrklpmn

þ
XI

k;m¼1

XJ

l;n¼1

B2nl
ijklmnrklqmn þ

XI

k;m;o¼1

XJ

l;n;p¼1

Cnl
ijklmnoprklrmnrop

þ
XI

k¼1

XJ

l¼1

A3e
ijklðD/� � D/þÞ � A3eþ

ij D/þ � A3e�
ij D/�

� Be
ijðD/� � D/þÞ � Beþ

ij D/þ þ
XI

k¼1

XJ

l¼1

Eklijpkl

þ
XI

k¼1

XJ

l¼1

Fklijqkl (A3)

where A to F are linear stiffness coefficients, A1nl to A3nl and B1nl

to B2nl are nonlinear quadratic stiffness coefficients, Cnl are non-
linear cubic stiffness coefficients, A1e to A3e are linear electric

force coefficients, A1nle are nonlinear electric force coefficients

due to the particular shape functions defined in Eq. (45), A1eþ=�

to A3eþ=� are linear electric force coefficients and A2nleþ=� non-
linear electric force coefficients in the outer and inner electrode
domains Xþ and X– due to the converse piezoelectric effect, and
finally Be and Beþ are linear electric force coefficients due to the

virtual work at @Xþ and @ �S defined in Eqs. (54) and (55).
In deriving Eqs. (A1)–(A3), several definitions of vectors are

introduced as follows: From Eq. (22)

fe� ¼ �e31D/�1; feþ ¼ �e31D/þ1 (A4)

where 1 ¼ ð1; 1; 0; 0; 0; 0ÞT. From Eqs. (11) and (43)

Blu
e ¼ e31ðD/� � D/þÞNe

ijcij (A5)

where

Ne
ij ¼

l;xwj 0 lwj;y 0 0 0

h;y/i 0 h/i;x 0 0 0

" #T

;

cij ¼ �
1

K

ðye
r

ye
l

wjdy

ðb

0

wj

� 	2dy

;

ðxe
r

xe
l

/idxða

0

/i½ �2dx

0
BBBB@

1
CCCCA

T

(A6)

From Eqs. (12) and (43)

Blu
m ¼ ½nl

pij
;nl

qij
; nl

rij
�ðpij; qij; rijÞT (A7)

where

nl
pij
;nl

qij
;nl

rij

h i

¼

/i;xwj 0 /iwj;y 0 0 0

0 /iwj;y /i;xwj 0 0 0

/iwj

Rx

/iwj

Ry
0 �/i;xxwj �/iwj;yy �2/i;xwj;y

2
666664

3
777775

T

(A8)

and

Bnlu
m ¼ nnl

ijklðpijpkl; qijqkl; rijrklÞT (A9)

where

nnl
ijkl ¼

1

2
/i;x/k;xwjwl

1

2
/i/kwj;ywl;y /i;x/kwjwl;y 0 0 0

� �T

(A10)

The coefficients in Eqs. (A1)–(A3) can be found as follows:

Aijkl ¼
ð

X
ðnl

pij
ÞTKnl

pkl
; Bijkl ¼

ð
X
ðnl

qij
ÞTKnl

qkl

Cijkl ¼
ð

X
ðnl

rij
ÞTKnl

rkl
; Dijkl ¼

ð
X
ðnl

pij
ÞTKnl

qkl

Eijkl ¼
ð

X
ðnl

pij
ÞTKnl

rkl
; Fijkl ¼

ð
X
ðnl

qij
ÞTKnl

rkl

(A11)

To obtain quantities ðÞklij, one simply needs to interchange ij and
kl. Note that Aijkl¼Aklij, Bijkl¼Bklij, and Cijkl¼Cklij. Furthermore,
Dijkl¼Dklij, Eijkl¼Eklij, and Fijkl¼Fklij only when the shell lami-
nate is symmetric in the xy plane. Also,

A1nl
ijklmn ¼

ð
X
ðnl

pij
ÞTKnnl

klmn

A3nl
ijklmn ¼

ð
X
ðnl

rij
ÞTKnnl

klmn þ 2

ð
X
ðnnl

ijklÞ
T
Knl

rmn

B1nl
ijklmn ¼ 2

ð
X
ðnnl

ijklÞ
T
Knl

pmn

Cnl
ijklmnop ¼ 2

ð
X
ðnnl

ijklÞ
T
Knnl

mnop

(A12)

and

A1e
ijkl ¼ e31

ð
X
ðnl

pij
ÞTKNe

klckl

A1nle
ijklmn ¼ 2e31

ð
X
ðnnl

ijklÞ
T
KNe

mncmn

A2nleþ
ijkl ¼ 2e31

ð
X�
ðnnl

ijklÞ
T
TT

2 1

A1eþ
ij ¼ e31

ð
Xþ
ðnl

pij
ÞTTT

2 1

(A13)

Furthermore

Be
ij ¼ e31�zð2Þð/i;xjx¼xe

l
� /i;xjx¼xe

r
Þ

�
ðye

r

ye
l

wjdyþ e31�zð2Þðwj;yjy¼ye
l
� wj;yjy¼ye

r
Þ
ðxe

r

xe
l

/idx

Beþ
ij ¼ e31�zð2Þð/i;xjx¼0 � /i;xjx¼aÞ

�
ðb

0

wjdyþ e31�zð2Þðwj;yjy¼0 � wj;yjy¼bÞ
ða

0

/idx

(A14)

To obtain A2nl
ijklmn and B2nl

ijklmn, one simply needs to substitute nl
qij

for nl
pij

. Similarly, one simply needs to substitute nl
qij

for nl
pij

to

obtain A2e
ijkl and A2eþ

ij , and substitute nl
rij

to obtain A3e
ijkl and A3eþ

ij .

Furthermore, one needs to substitute X� for Xþ to obtain

A1e�
ij ; A2e�

ij ; A3e�
ij and A2nle�

ijkl .

Note that pkl and qkl in Eqs. (A1) and (A2) linearly depend on
each other, and thus can be rearranged into a matrix form

Aijkl Dijkl

Dklij Bijkl

� �
pkl

qkl

� �
¼ fpkl

ðr;D/Þ
fqkl
ðr;D/Þ

� �
(A15)
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In Eq. (A15)

fpkl
ðr;D/Þ ¼ �

XI

k¼1

XJ

l¼1

Eijklrkl �
XI

k;m¼1

XJ

l;n¼1

A1nl
ijklmnrklrmn

�
XI

k¼1

XJ

l¼1

A1e
ijklðD/� � D/þÞ þ A1eþ

ij D/þ þ A1e�
ij D/�

(A16)

and fqkl
ðr;D/Þ can be obtained by substituting Fijkl, A2nl

ijklmn;

A2e
ijkl; A2eþ

ij and A2e�
ij for Eijkl, A1nl

ijklmn; A1e
ijkl; A1eþ

ij and A1e�
ij ,

respectively. Assume there exists an inverse matrix (typically
obtained by numerical methods) such that

~Aijkl
~Dijkl

~Dklij
~Bijkl

" #
fpkl
ðr;D/Þ

fqkl
ðr;D/Þ

� �
¼ pkl

qkl

� �
(A17)

Substitution of pkl and qkl in Eq. (A17) into Eq. (A3), pkl and qkl

can be eliminated from Eq. (A3), leading to Eq. (58). Finally,
coefficients in Eq. (58) can be found as follows:

Fe
ijkl ¼ A3e

ijkl � Eklij

XI

m¼1

XJ

n¼1

ð ~AijmnA1e
ijmn þ ~DijmnA2e

ijmnÞ

�Fklij

XI

m¼1

XJ

n¼1

ð ~DmnijA1e
ijmn þ ~BijmnA2e

ijmnÞ

Feþ
ij ¼ �A3eþ

ij þ
XI

k¼1

XJ

l¼1

Eklijð ~AijklA1eþ
kl þ ~DijklA2eþ

kl Þ

þ
XI

k¼1

XJ

l¼1

Fklijð ~DklijA1eþ
kl þ ~BijklA2eþ

kl Þ

þ
XI

m¼1

XJ

n¼1

B2nl
ijklmnð ~DmnijA1e�

mn þ ~BijmnA2e�
mnÞ

Snleþ
ijkl ¼

XI

m¼1

XJ

n¼1

B1nl
ijklmnð ~AijmnA1eþ

mn þ ~DijmnA2eþ
mnÞ

þ
XI

m¼1

XJ

n¼1

B2nl
ijklmnð ~DmnijA1eþ

mn þ ~BijmnA2eþ
mnÞ � A2nleþ

ijkl

Snle
ijklmn ¼ �B1nl

ijklmn

XI

o¼1

XJ

p¼1

ð ~AijopA1e
ijop þ ~DijopA2e

ijopÞ

�B2nl
ijklmn

XI

o¼1

XJ

p¼1

ð ~DopijA1e
ijop þ ~BijopA2e

ijopÞ þ A1nle
ijklmn

Kijkl ¼ Cijkl � Eklij

XI

m¼1

XJ

n¼1

ð ~AijmnEijmn þ ~DijmnFijmnÞ

�Fklij

XI

m¼1

XJ

n¼1

ð ~DmnijEijmn þ ~BijmnFijmnÞ

Qnl
ijklmn ¼ A3nl

ijklmn � B1nl
ijklmn

XI

o¼1

XJ

p¼1

ð ~AijopEijop þ ~DijopFijopÞ

�B2nl
ijklmn

XI

o¼1

XJ

p¼1

ð ~DopijEijop þ ~BijopFijopÞ

�Eklij

XI

o¼1

XJ

p¼1

ð ~AijopA1nl
ijmnop þ ~DijopA2nl

ijmnopÞ

�Fklij

XI

o¼1

XJ

p¼1

ð ~DopijA1nl
ijmnop þ ~BijopA2nl

ijmnopÞ

Cnl
ijklmnop ¼ Cnl

ijklmnop � B1nl
ijklmn

XI

q¼1

XJ

r¼1

ð ~AijqrA1nl
ijopqr þ ~DijqrA2nl

ijopqrÞ

�B2nl
ijklmn

XI

q¼1

XJ

r¼1

ð ~DqrijA1nl
ijopqr þ ~BijqrA2nl

ijopqrÞ (A18)

Note that Fe�
ij and Snle�

ijkl can be obtained by substituting X� for
Xþ.
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