Abstract

Structural damage occurs in a variety of civil, mechanical, and aerospace engineering systems, and it is critical to effectively identify such damage in order to prevent catastrophic failures. When cracks are present in a structure, the breathing phenomenon that occurs between crack surfaces typically triggers nonlinearity in the dynamic response. In this work, in order to thoroughly understand the nonlinear effect of cracks on structural dynamics, two modeling approaches are integrated to investigate the crack-induced nonlinear dynamics of cantilever beams. First, a modeling method referred to as the discrete element (DE) method is employed to construct a model of a cracked beam. The DE model is able to characterize the breathing phenomenon of cracks. Next, a simulation technique referred to as the hybrid symbolic-numeric computational (HSNC) method is used to analyze the nonlinear response of the cracked beam. The HSNC method provides an efficient way to evaluate both stationary and nonstationary dynamics of cracked systems since it combines efficient linear techniques with an optimization tool to capture the system’s nonlinear response. The proposed computational platform thus enables efficient multiparametric analysis of cracked structures. The effects of crack location, crack depth, and excitation frequency on the cantilever beam are parametrically investigated using the proposed method. Nonlinear features such as subharmonic resonance, nonstationary motion, multistability, and frequency shift are also discussed in this paper.

References

1.
Ou
,
J.
, and
Li
,
H.
,
2010
, “
Structural Health Monitoring in Mainland China: Review and Future Trends
,”
Struct. Health Monit.
,
9
(
3
), pp.
219
231
.
2.
Chomette
,
B.
,
2020
, “
Nonlinear Multiple Breathing Cracks Detection Using Direct Zeros Estimation of Higher-Order Frequency Response Function
,”
Commun. Nonlinear Sci. Numer. Simul.
,
89
(
6
), p.
105330
.
3.
Tamhane
,
D.
,
Patil
,
J.
,
Banerjee
,
S.
, and
Tallur
,
S.
,
2021
, “
Feature Engineering of Time-Domain Signals Based on Principal Component Analysis for Rebar Corrosion Assessment Using Pulse Eddy Current
,”
IEEE Sens. J.
,
21
(
19
), pp.
22086
22093
.
4.
Cao
,
M.
,
Sha
,
G.
,
Gao
,
Y.
, and
Ostachowicz
,
W.
,
2017
, “
Structural Damage Identification Using Damping: A Compendium of Uses and Features
,”
Smart Mater. Struct.
,
26
(
4
), p.
043001
.
5.
Dragos
,
K.
, and
Smarsly
,
K.
,
2016
, “
Distributed Adaptive Diagnosis of Sensor Faults Using Structural Response Data
,”
Smart Mater. Struct.
,
25
(
10
), p.
105019
.
6.
Rosafalco
,
L.
,
Torzoni
,
M.
,
Manzoni
,
A.
,
Mariani
,
S.
, and
Corigliano
,
A.
,
2021
, “
Online Structural Health Monitoring by Model Order Reduction and Deep Learning Algorithms
,”
Comput. Struct.
,
255
, p.
106604
.
7.
Chondros
,
T.
, and
Dimarogonas
,
A.
,
1980
, “
Identification of Cracks in Welded Joints of Complex Structures
,”
J. Sound Vib.
,
69
(
4
), pp.
531
538
.
8.
Peng
,
J. Y.
,
Cao
,
M. S.
,
Xia
,
N.
, and
Chen
,
J. G.
,
2013
, “Natural Frequency Spectra of Cracked Beams for Dynamic Property Characterization,”
Applied Mechanics and Materials
, Vol.
275
,
S.
Xu
, ed.,
Trans Tech Publications
,
Switzerland
, pp.
247
251
.
9.
Liang
,
R. Y.
,
Choy
,
F. K.
, and
Hu
,
J.
,
1991
, “
Detection of Cracks in Beam Structures Using Measurements of Natural Frequencies
,”
J. Franklin Inst.
,
328
(
4
), pp.
505
518
.
10.
Zheng
,
D. Y.
, and
Kessissoglou
,
N.
,
2004
, “
Free Vibration Analysis of a Cracked Beam by Finite Element Method
,”
J. Sound Vib.
,
273
(
3
), pp.
457
475
.
11.
Ong
,
Z.
,
Rahman
,
A.
, and
Ismail
,
Z.
,
2014
, “
Determination of Damage Severity on Rotor Shaft Due to Crack Using Damage Index Derived From Experimental Modal Data
,”
Exp. Tech.
,
38
(
5
), pp.
18
30
.
12.
Kharazan
,
M.
,
Irani
,
S.
, and
Reza Salimi
,
M.
,
2021
, “
Nonlinear Vibration Analysis of a Cantilever Beam With a Breathing Crack and Bilinear Behavior
,”
J. Vib. Control
,
28
(
19–20
), p.
10775463211018315
.
13.
Mungla
,
M. J.
,
Sharma
,
D. S.
, and
Trivedi
,
R. R.
,
2016
, “
Identification of a Crack in Clamped–Clamped Beam Using Frequency-Based Method and Genetic Algorithm
,”
Procedia Eng.
,
144
, pp.
1426
1434
.
14.
Giannini
,
O.
,
Casini
,
P.
, and
Vestroni
,
F.
,
2013
, “
Nonlinear Harmonic Identification of Breathing Cracks in Beams
,”
Comput. Struct.
,
129
, pp.
166
177
.
15.
Huang
,
Y.-H.
,
Chen
,
J.-E.
,
Ge
,
W.-M.
,
Bian
,
X.-L.
, and
Hu
,
W.-H.
,
2019
, “
Research on Geometric Features of Phase Diagram and Crack Identification of Cantilever Beam With Breathing Crack
,”
Results Phys.
,
15
(
2
), p.
102561
.
16.
Kharazan
,
M.
,
Irani
,
S.
,
Noorian
,
M. A.
, and
Salimi
,
M. R.
,
2021
, “
Effect of a Breathing Crack on the Damping Changes in Nonlinear Vibrations of a Cracked Beam: Experimental and Theoretical Investigations
,”
J. Vib. Control
,
27
(
19–20
), pp.
2345
2353
.
17.
Kharazan
,
M.
,
Irani
,
S.
,
Noorian
,
M. A.
, and
Salimi
,
M. R.
,
2021
, “
Nonlinear Vibration Analysis of a Cantilever Beam With Multiple Breathing Edge Cracks
,”
Int. J. Non-Linear Mech.
,
136
, p.
103774
.
18.
Bovsunovsky
,
A.
, and
Surace
,
C.
,
2015
, “
Non-linearities in the Vibrations of Elastic Structures With a Closing Crack: A State of the Art Review
,”
Mech. Syst. Signal Process.
,
62
, pp.
129
148
.
19.
Broda
,
D.
,
Pieczonka
,
L.
,
Hiwarkar
,
V.
,
Staszewski
,
W.
, and
Silberschmidt
,
V.
,
2016
, “
Generation of Higher Harmonics in Longitudinal Vibration of Beams With Breathing Cracks
,”
J. Sound Vib.
,
381
, pp.
206
219
.
20.
Xu
,
W.
,
Su
,
Z.
,
Radzieński
,
M.
,
Cao
,
M.
, and
Ostachowicz
,
W.
,
2021
, “
Nonlinear Pseudo-Force in a Breathing Crack to Generate Harmonics
,”
J. Sound Vib.
,
492
(
1
), p.
115734
.
21.
Zhang
,
M.
,
Xiao
,
L.
,
Qu
,
W.
, and
Lu
,
Y.
,
2017
, “
Damage Detection of Fatigue Cracks Under Nonlinear Boundary Condition Using Subharmonic Resonance
,”
Ultrasonics
,
77
, pp.
152
159
.
22.
Zavodney
,
L.
, and
Nayfeh
,
A.
,
1989
, “
The Non-linear Response of a Slender Beam Carrying a Lumped Mass to a Principal Parametric Excitation: Theory and Experiment
,”
Int. J. Non-Linear Mech.
,
24
(
2
), pp.
105
125
.
23.
Meesala
,
V. C.
, and
Hajj
,
M. R.
,
2019
, “
Response Variations of a Cantilever Beam-Tip Mass System With Nonlinear and Linearized Boundary Conditions
,”
J. Vib. Control
,
25
(
3
), pp.
485
496
.
24.
Utzeri
,
M.
,
Sasso
,
M.
,
Chiappini
,
G.
, and
Lenci
,
S.
,
2020
, “
Nonlinear Vibrations of a Composite Beam in Large Displacements: Analytical, Numerical, and Experimental Approaches
,”
J. Comput. Nonlinear Dyn.
,
16
(
2
), p.
021002
.
25.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech.
,
85
(
EM3
), pp.
67
94
.
26.
Dormand
,
J.
, and
Prince
,
P.
,
1980
, “
A Family of Embedded Runge–Kutta Formulae
,”
J. Comput. Appl. Math.
,
6
(
1
), pp.
19
26
.
27.
Parhi
,
D. R.
, and
Jena
,
S. P.
,
2017
, “
Dynamic and Experimental Analysis on Response of Multi-cracked Structures Carrying Transit Mass
,”
Proc. Inst. Mech. Eng. Part O: J. Risk Reliab.
,
231
(
1
), pp.
25
35
.
28.
Saito
,
A.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2006
, “
Efficient Nonlinear Vibration Analysis of the Forced Response of Rotating Cracked Blades
,”
Proceedings of IMECE 2006
, Paper No. IMECE2006-15426.
29.
Zucca
,
S.
, and
Epureanu
,
B. I.
,
2018
, “
Reduced Order Models for Nonlinear Dynamic Analysis of Structures With Intermittent Contacts
,”
J. Vib. Control
,
24
(
12
), pp.
2591
2604
.
30.
Tien
,
M.-H.
, and
D’Souza
,
K.
,
2019
, “
Analyzing Bilinear Systems Using a New Hybrid Symbolic-Numeric Computational Method
,”
ASME J. Vib. Acoust.
,
141
(
3
), p.
031008
.
31.
Tien
,
M.-H.
, and
DSouza
,
K.
,
2019
, “
Transient Dynamic Analysis of Cracked Structures With Multiple Contact Pairs Using Generalized HSNC
,”
Nonlinear Dyn.
,
96
, pp.
1115
1131
.
32.
Neves
,
A.
,
Simões
,
F.
, and
Da Costa
,
A. P.
,
2016
, “
Vibrations of Cracked Beams: Discrete Mass and Stiffness Models
,”
Comput. Struct.
,
168
, pp.
68
77
.
33.
Okamura
,
H.
,
Liu
,
H.-W.
,
Chu
,
C.-S.
, and
Liebowitz
,
H.
,
1969
, “
A Cracked Column Under Compression
,”
Eng. Fract. Mech.
,
1
(
3
), pp.
547
564
.
34.
Rao
,
S.
,
2017
,
Mechanical Vibrations
,
Pearson Education, Incorporated
,
Upper Saddle River, NJ
.
You do not currently have access to this content.