Abstract

Attenuating low-frequency sound is often problematic, due to the large space required for common absorptive materials to mitigate such noise. However, natural hollow reeds are known to effectively attenuate low frequencies while occupying relatively little space compared to traditional absorptive materials. The present study determines the effect of varied outer diameter and outer spacing on the 200–1600 Hz acoustic absorption of 3D printed arrays of hollow cylinders. Samples were tested in a 100-mm diameter normal incidence impedance tube such that cylinder length was oriented perpendicular to the incoming plane wave. By varying only one geometric element of each array, the absorption due to any parameter can be assessed individually. It was found that minimizing cylinder spacing and maximizing cylinder diameter resulted in increased overall absorption and produced more focused absorption peaks at specific low frequencies. Wider cylinder spacing produced a broader absorptive frequency range, despite shifting upward in frequency. Thus, manipulating these variables can specifically target absorption for low-frequency noise that would otherwise disturb listeners.

References

1.
Merino-Martinez
,
R.
,
Snellen
,
M.
, and
Simons
,
D.
,
2016
, “
Determination of Aircraft Noise Variability Using an Acoustic Camera
,”
Proceedings of 23rd International Congress on Sound and Vibration
,
Athens, Greece
,
July 10–14
, pp.
1
8
.
2.
Simons
,
D.
,
Snellen
,
M.
,
van Midden
,
B.
,
Arntzen
,
M.
, and
Bergmans
,
D.
,
2015
, “
Assessment of Noise Level Variations of Aircraft Flyovers Using Acoustic Arrays
,”
J. Aircr.
,
52
(
5
), pp.
1625
1633
. 10.2514/1.C033020
3.
Koch
,
L. D.
,
Jones
,
M. G.
,
Bonacuse
,
P. J.
,
Miller
,
C. J.
,
Johnston
,
J. C.
, and
Kuczmarski
,
M. A.
,
2019
, United States of America Patent 10,460,714 B1.
4.
Pennec
,
Y.
,
Djafari-Rouhani
,
B.
,
Vasseur
,
J. O.
,
Khelif
,
A.
, and
Deymier
,
P. A.
,
2004
, “
Tunable Filtering and Demultiplexing in Phononic Crystals With Hollow Cylinders
,”
Phys. Rev. E
,
69
(
4
), p.
046608
. 10.1103/PhysRevE.69.046608
5.
Chilekwa
,
V.
,
Sieffert
,
G.
,
Egan
,
C. A.
, and
Oldham
,
D.
,
2006
, “
The Acoustical Characteristics of Reed Configurations
,”
Euronoise 2006
,
Tampere, Finland
,
May 30–June 1
, pp.
1
6
.
6.
Brennan
,
M.
, and
To
,
W.
,
2001
, “
Acoustic Properties of Rigid-Frame Porous Materials—An Engineering Perspective
,”
Appl. Acoust.
,
62
(
7
), pp.
793
811
. 10.1016/S0003-682X(00)00080-3
7.
Oldham
,
D.
,
Egan
,
C. A.
, and
Cookson
,
R.
,
2011
, “
Sustainable Acoustic Absorbers From the Biomass
,”
Appl. Acoust.
,
72
(
6
), pp.
350
363
. 10.1016/j.apacoust.2010.12.009
8.
Putra
,
A.
,
Abd Kahair
,
F.
, and
Nor
,
M. J. M.
,
2015
, “
Utilizing Hollow-Structured Bamboo as Natural Sound Absorber
,”
Arch. Acoust.
,
40
(
4
), pp.
601
608
. 10.1515/aoa-2015-0060
9.
Asdrubali
,
F.
,
D’Alessandro
,
F.
,
Schiavoni
,
S.
, and
Mencarelli
,
N.
,
2015
, “
Sound Absorption Properties of Reed
,”
Proceedings of 22nd International Congress on Sound and Vibration
,
Florence, Italy
,
July 12–16
, pp.
1
8
.
10.
Huang
,
W.
,
Schwan
,
L.
,
Romero-Garcia
,
V.
,
Genevaux
,
J.-M.
, and
Groby
,
J.-P.
,
2017
, “
3D-Printed Straw-Inspired Metamaterial for Sound Absorption
,”
11th International Congress on Engineered Material Platforms for Novel Wave Phenomena—Metamaterials 2017
,
Marseille, France
,
Aug. 28–Sept 2
, pp.
1
3
.
11.
Koussa
,
F.
,
Defrance
,
J.
,
Jean
,
P.
, and
Blanc-Benon
,
P.
,
2013
, “
Acoustical Efficiency of a Sonic Crystal Assisted
,”
Acta Acust. Acust.
,
99
(
3
), pp.
399
409
. 10.3813/AAA.918621
12.
Lagarrigue
,
C.
,
Groby
,
J.
, and
Tournat
,
V.
,
2013
, “
Sustainable Sonic Crystal Made of Resonating Bamboo Rods
,”
J. Acoust. Soc. Am.
,
133
(
1
), pp.
247
254
. 10.1121/1.4769783
13.
Wang
,
X.
,
Zhang
,
X.
,
Yu
,
Q.
, and
Harmon
,
B.
,
1993
, “
Multiple-Scattering Theory for Electromagnetic Waves
,”
Phys Rev. B
,
47
(
8
), pp.
4161
4167
. 10.1103/PhysRevB.47.4161
14.
Lepak
,
W. B.
,
Sterner
,
M.
, and
Slaboch
,
P. E.
,
2018
, “
Acoustic Performance of Additively Manufactured Reeds as an Absorber
,”
Proceedings of Inter-Noise and Noise-Con Congress and Conference
,
Chicago, IL
,
Aug. 26–29
, pp.
1
9
.
15.
Chen
,
Y.
, and
Ye
,
Z.
,
2001
, “
Theoretical Analysis of Acoustic Stop Bands in Two-Dimensional Periodic Scattering Arrays
,”
Phys. Rev. E
,
64
(
3
), p.
036616
. 10.1103/PhysRevE.64.036616
16.
Kushwaha
,
M. S.
,
1997
, “
Stop-Bands for Periodic Metallic Rods: Sculptures That Can Filter the Noise
,”
Appl. Phys. Lett.
,
70
(
24
), pp.
3218
3220
. 10.1063/1.119130
17.
Kushwaha
,
M. S.
,
Halevi
,
P.
, and
Martinez
,
G.
,
1994
, “
Theory of Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. B
,
49
(
4
), pp.
2313
2322
. 10.1103/PhysRevB.49.2313
18.
Lei
,
L.
,
Dauchez
,
N.
, and
Chazot
,
J.
,
2018
, “
Prediction of the Six Parameters of an Equivalent Fluid Model for Thermocompressed Glass Wools and Melamine Foam
,”
Appl. Acoust.
,
139
, pp.
44
56
. 10.1016/j.apacoust.2018.04.010
19.
Asdrubali
,
F.
,
Sciavoni
,
S.
, and
Horoshenkov
,
K. V.
,
2012
, “
A Review of Sustainable Materials for Acoustic Applications
,”
J. Build. Acoust.
,
19
(
4
), pp.
283
311
. 10.1260/1351-010X.19.4.283
20.
Zendehnam
,
A.
,
Hosseinpour
,
M.
,
Mirzaei
,
M.
, and
Hedayati
,
K.
,
2014
, “
Optimum Values of Air-Filling Fraction for Photonic Crystal Fibers With Different Configurations and Fixed Number of Air Rings
,”
Appl. Opt.
,
53
(
6
), pp.
1075
1081
. 10.1364/AO.53.001075
21.
Caballero
,
D.
, and
Sánchez-Dehesa
,
J.
,
2001
, “
Suzuki Phase in Two-Dimensional Sonic Crystals
,”
Phys. Rev. B
,
64
(
6
), p.
064303
. 10.1103/PhysRevB.64.064303
22.
Sánchez-Pérez
,
J. V.
,
Caballero
,
D.
,
Mártinez-Sala
,
R.
,
Rubio
,
C.
,
Sánchez-Dehesa
,
J.
,
Meseguer
,
F.
,
Llinares
,
J.
, and
Gálvez
,
F.
,
1998
, “
Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders
,”
Phys. Rev. Lett.
,
80
(
24
), pp.
5325
5328
. 10.1103/PhysRevLett.80.5325
23.
Cicala
,
G.
,
Giordano
,
D.
,
Tosto
,
C.
,
Filippone
,
G.
,
Recca
,
A.
, and
Blanco
,
I.
,
2018
, “
Polylactide (PLA) Filaments a Biobased Solution for Additive Manufacturing: Correlating Rheology and Thermomechanical Properties With Printing Quality
,”
Materials
,
11
(
7
), p.
1191
. 10.3390/ma11071191
24.
Li
,
Y.
,
Du
,
L.
,
Kai
,
C.
,
Huang
,
R.
, and
Wu
,
Q.
,
2018
, “
Bamboo and High Density Polyethylene Composite With Heat-Treated Bamboo Fiber: Thermal Decomposition Properties
,”
BioResources
,
8
(
1
), pp.
900
912
.
You do not currently have access to this content.