This paper focuses on the influence of sudden drop tests on the nonlinear structural behavior of electrically actuated bi-table shallow microelectromechanical system (MEMS) arches. The assumed structure consists of an initially bell-shaped doubly clamped microbeam with a rectangular cross section. The Euler–Bernoulli beam theory is assumed to model the nonlinear structural behavior of the bistable system under the combined effect of both the direct current (DC) actuating load and the shaking waves. Moreover, the structural model takes into account both geometric midplane stretching and electric actuation nonlinear terms. A multimode Galerkin-based decomposition is used to discretize the beam equations to extract a reduced-order model (ROM). The convergence of the ROM simulations are first verified and furthermore compared to published experimental data. A thorough ROM parametric study showed that the effect of increasing the shallow arch initial rise alter drastically the system behavior from undergoing a uninterrupted snap-through motion to a sudden snap-through instability. Moreover, the arch rise relationship with its shock spectrum response (SSR) is investigated and it was concluded that as increasing the rise value can cause the system to collapse under the combined DC and shock wave loadings if the shock wave duration is lower or near the system fundamental natural period. All the presented graphs in this investigation represent some robust numerical approaches and design tools to help MEMS designers in improving both the reliability and efficiency of these bistable-based microdevices under shaking dynamic environments.

References

1.
Senturia
,
S. D.
,
2007
,
Microsystem Design
,
Springer Science & Business Media
,
Dordrecht, The Netherlands
.
2.
Marks, L. S., Sadegh, A. M., Avallone, E. A., and Baumeister, T., 2006, Marks' Standard Handbook for Mechanical Engineers, McGraw-Hill, New York.
3.
Bhushan
,
B.
,
2002
,
Introduction to Tribology
,
Wiley
,
New York
.
4.
Kurhekar
,
A. S.
,
Apte
,
P. R.
, and
Duttagupta
,
S. P.
,
2016
, “
Design and Fabrication of Bulk Micro-Machined, High Resilience, High-Q, High Tilt Angle, Low Driving Voltage, Flexure Beam Micro-Mirrors on Mono-Crystalline Silicon
,”
Silicon
,
8
(
1
), pp.
11
24
.
5.
PRIME Faraday Partnership,
2002
,
An Introduction to MEMS (Micro-Electricalmechanical Systems)
, Loughborough University, Loughborough, UK, pp.
11
15
.
6.
Jones
,
R.
, and
Chapman
,
M.
,
2005
, “
RF MEMS in Mobile Phones
,”
RF Des.
,
28
(
9
), pp.
20
24
.http://defenseelectronicsmag.com/site-files/defenseelectronicsmag.com/files/archive/rfdesign.com/mag/0509RFDF1.pdf
7.
Ma
,
J.
,
2015
, “
Advanced MEMS-Based Technologies and Displays
,”
Displays
,
37
, pp.
2
10
.
8.
Boronakhin
,
A. M.
,
Podgornaya
,
L. N.
,
Bokhman
,
E. D.
,
Filipenya
,
N. S.
,
Filatov
,
Y. V.
,
Shalymov
,
R. B.
, and
Larionov
,
D. Y.
,
2011
, “
MEMS-Based Inertial System for Railway Track Diagnostics
,”
Gyroscopy Navigation
,
2
(
4
), pp.
261
268
.
9.
Niu
,
X.
,
Zhang
,
Q.
,
Li
,
Y.
,
Cheng
,
Y.
, and
Shi
,
C.
,
2012
, “
Using Inertial Sensors of iPhone 4 for Car Navigation
,”
Position Location and Navigation Symposium
(
PLANS
), Myrtle Beach, SC, Apr. 23–26, pp.
555
561
.
10.
Jang
,
L.-S.
,
Kan
,
W.-H.
,
Chen
,
M.-K.
, and
Chou
,
Y.-M.
,
2009
, “
Parameter Extraction From BVD Electrical Model of PZT Actuator of Micropumps Using Time-Domain Measurement Technique
,”
Microfluid. Nanofluid.
,
7
(
4
), pp.
559
568
.
11.
Hsu
,
T.-R.
,
2006
, “
Reliability in MEMS Packaging
,”
IEEE 44th Annual International Reliability Physics Symposium
(
RELPHY
), San Jose, CA, Mar. 26–30, pp.
398
402
.
12.
Stanimirovic
,
I.
, and
Stanimirovic
,
Z.
,
2011
, “
Reliability of MEMS
,”
Microelectron. Reliab.
,
43
(
7
), pp.
1047
1048
.https://www.intechopen.com/books/micro-electronic-and-mechanical-systems/reliability-of-mems
13.
Somà
,
A.
, and
De Pasquale
,
G.
,
2010
, “
Reliability of MEMS: Effects of Different Stress Conditions and Mechanical Fatigue Failure Detection
,” Sixth International Conference on Perspective Technologies and Methods in MEMS Design (
MEMSTECH
), Lviv, Ukraine, Apr. 20–23, pp.
72
80
.http://ieeexplore.ieee.org/document/5499323/
14.
Dugger
,
M. T.
,
Asay
,
D. B.
, and
Kim
,
S. H.
,
2008
, “MEMS Lubrication by In-Situ Tribochemical Reactions From the Vapor Phase,” Sandia National Laboratories, Albuquerque, NM, Report No.
113217
.http://prod.sandia.gov/techlib/access-control.cgi/2008/080369.pdf
15.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2009
, “Modeling and Simulations of Collapse Instabilities of Microbeams Due to Capillary Forces,”
Math. Probl. Eng.
,
2009
, p. 871902.
16.
Mastrangelo
,
C. H.
, and
Hsu
,
C. H.
,
1993
, “
Mechanical Stability and Adhesion of Microstructures Under Capillary Forces—Part I. Basic Theory
,”
J. Microelectromech. Syst.
,
2
(
1
), pp.
33
43
.
17.
Srikar
,
V. T.
, and
Senturia
,
S. D.
,
2002
, “
The Reliability of Microelectromechanical Systems (MEMS) in Shock Environments
,”
J. Microelectromech. Syst.
,
11
(
3
), pp.
206
214
.
18.
Lueke
,
J.
,
Quddus
,
N. A.
,
Moussa
,
W.
, and
Chahal
,
A.
,
2005
, “
A Parametric Study of Thermal Effects on the Reliability of RF MEMS Switches
,”
IEEE International Conference on MEMS, NANO and Smart Systems
(
ICMENS
), Banff, AB, Canada, July 24–27, pp.
30
31
.
19.
Ouakad
,
H. M.
,
Younis
,
M. I.
, and
Alsaleem
,
F.
,
2012
, “
Dynamic Response of an Electrostatically Actuated Microbeam to Drop-Table Test
,”
J. Micromech. Microeng.
,
22
(
9
), p.
095003
20.
Ghisi
,
A.
,
Kalicinski
,
S.
,
Mariani
,
S.
,
De Wolf
,
I.
, and
Corigliano
,
A.
,
2009
, “
Polysilicon MEMS Accelerometers Exposed to Shocks: Numerical–Experimental Investigation
,”
J. Micromech. Microeng.
,
19
(
3
), p.
035023
.
21.
Xuran
,
D.
,
Yue
,
F.
,
Wenzhong
,
L.
, and
Yunlong
,
G.
,
2015
, “
Failure of a MEMS Switch After Environmental Test
,”
IEEE Tenth International Conference on MEMS, NANO and Molecular Systems
(
NEMS
), Xi'an, China, Apr. 7–11, pp.
417
420
.
22.
Zhang
,
L.
,
Yang
,
F.
,
Li
,
R.
,
Guan
,
T.
,
He
,
J.
,
Fu
,
F. S.
,
Li
,
D.
, and
Zhang
,
D.
,
2016
, “
A Novel Impact Tester for In Situ Evaluating the Shock Reliability of Micro-Structures
,”
IEEE 29th International Conference on Micro Electro Mechanical Systems
(
MEMSYS
), Shanghai, China, Jan. 24–28, pp.
942
945
.
23.
Xu
,
K.
,
Zhu
,
N.
,
Zhang
,
X.
,
Su
,
W.
,
Zhang
,
W.
, and
Hao
,
Y.
,
2016
, “
A Novel Shock Protection Method Based on MEMS Compliant Latching Stopper
,”
IEEE 29th International Conference on Micro Electro Mechanical Systems
(
MEMSYS
), Shanghai, China, Jan. 24–28, pp.
1125
1128
.
24.
Huang
,
S.
,
Li
,
X.
,
Wang
,
Y.
,
Jiao
,
J.
,
Ge
,
X.
,
Lu
,
D.
,
Che
,
L.
,
Zhang
,
K.
, and
Xiong
,
B.
,
2003
, “
A Piezoresistive Accelerometer With Axially Stressed Tiny Beams for Both Much Increased Sensitivity and Much Broadened Frequency Bandwidth
,”
IEEE 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems
(
SENSOR
), Boston, MA, June 8–12, pp.
91
94
.
25.
Naumann
,
M.
,
Mehner
,
J.
,
Lin
,
D.
, and
Miller
,
T. F.
,
2010
, “
Design and Application of Flexible Stops for MEMS Devices
,”
IEEE Sens.
, pp.
168
173
.
26.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2014
, “
On Using the Dynamic Snap-Through Motion of MEMS Initially Curved Microbeams for Filtering Applications
,”
J. Sound Vib.
,
333
(
2
), pp.
555
568
.
27.
Ouakad
,
H. M.
,
2013
, “
An Electrostatically Actuated MEMS Arch Band-Pass Filter
,”
Shock Vib.
,
20
(
4
), pp.
809
819
.
28.
Saif
,
M. T. A.
,
2000
, “
On a Tunable Bistable MEMS-Theory and Experiment
,”
J. Microelectromech. Syst.
,
9
(
2
), pp.
157
170
.
29.
Rhoads
,
J. F.
,
Shaw
,
S. W.
, and
Turner
,
K. L.
,
2006
, “
The Nonlinear Response of Resonant Microbeam Systems With Purely-Parametric Electrostatic Actuation
,”
J. Micromech. Microeng.
,
16
(
5
), pp.
890
892
.
30.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
.
31.
Hwang
,
I.-H.
,
Shim
,
Y.-S.
, and
Lee
,
J.-H.
,
2003
, “
Modeling and Experimental Characterization of the Chevron-Type Bi-Stable Microactuator
,”
J. Micromech. Microeng.
,
13
(
6
), pp.
948
951
.
32.
Han
,
J. S.
,
MÞller
,
C.
,
Wallrabe
,
U.
, and
Korvink
,
J. G.
,
2007
, “
Design, Simulation, and Fabrication of a Quadstable Monolithic Mechanism With X- and Y-Directional Bistable Curved Beams
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1198
1203
.
33.
Ramini
,
A. H.
,
Hennawi
,
Q. M.
, and
Younis
,
M. I.
,
2016
, “
Theoretical and Experimental Investigation of the Nonlinear Behavior of an Electrostatically Actuated In-Plane MEMS Arch
,”
J. Microelectromech. Syst.
,
25
(
3
), pp.
570
578
.
34.
Younis
,
M. I.
,
2011
,
MEMS Linear and Nonlinear Statics and Dynamics
,
Springer Science & Business Media
,
New York
.
35.
Nayfeh
,
A. H.
,
2000
,
Nonlinear Interactions
,
Wiley
,
New York
.
36.
Poon
,
W. Y.
,
Ng
,
C. F.
, and
Lee
,
Y. Y.
,
2002
, “
Dynamic Stability of a Curved Beam Under Sinusoidal Loading
,”
Proc. Inst. Mech. Eng., Part G
,
216
(
4
), pp.
209
217
.
37.
Ansari
,
R.
,
Ashrafi
,
M. A.
,
Pourashraf
,
T.
, and
Hemmatnezhad
,
M.
,
2014
, “
Vibration Analysis of a Postbuckled Microscale FG Beam Based on Modified Couple Stress Theory
,”
Shock Vib.
,
2014
, p. 654640.
38.
Allen
,
M. S.
,
Massad
,
J. E.
,
Field
,
R. V.
, and
Dyck
,
C. W.
,
2008
, “
Input and Design Optimization Under Uncertainty to Minimize the Impact Velocity of an Electrostatically Actuated MEMS Switch
,”
ASME J. Vib. Acoust.
,
130
(
2
), p.
021009
.
39.
Somà
,
A.
, and
De Pasquale
,
G.
,
2016
, “
Preshaping Command Functions to Control the Dynamic Impacts in MEMS
,”
ASME J. Vib. Acoust.
,
138
(
1
), p. 011013.
40.
Krylov
,
S.
, and
Dick
,
N.
,
2010
, “
Dynamic Stability of Electrostatically Actuated Initially Curved Shallow Micro Beams
,”
Continuum Mech. Thermodyn.
,
22
(
6
), pp.
445
468
.
41.
Ouakad
,
H. M.
,
2015
, “
The Response of a Micro-Electro-Mechanical System (MEMS) Cantilever-Paddle Gas Sensor to Mechanical Shock Loads
,”
J. Vib. Control
,
21
(
14
), pp.
2739
2754
.
42.
Mohammad
,
T. F.
, and
Ouakad
,
H. M.
,
2016
, “
Static, Eigenvalue Problem and Bifurcation Analysis of MEMS Arches Actuated by Electrostatic Fringing-Fields
,”
Microsyst. Technol.
,
22
(
1
), pp.
193
206
.
43.
Nayfeh
,
A. H.
, and
Pai
,
P. F.
,
2008
,
Linear and Nonlinear Structural Mechanics
,
Wiley
,
New York
.
44.
Pitarresi
,
J.
,
Roggeman
,
B.
,
Chaparala
,
S.
, and
Geng
,
P.
,
2004
, “
Mechanical Shock Testing and Modeling of PC Motherboards
,”
Electronic Components and Technology Conference
(
ECTC
), Las Vegas, NV, June 4, pp.
1047
1054
.
45.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
Wiley
,
Weinheim, Germany
.
46.
Trusov
,
A. A.
,
Schofield
,
A. R.
, and
Shkel
,
A. M.
,
2008
, “
A Substrate Energy Dissipation Mechanism in in-Phase and anti-Phase Micromachined z-Axis Vibratory Gyroscopes
,”
J. Micromech. Microeng.
,
18
(
9
), p.
095016
.
47.
Lacarbonara
,
W.
, and
Rega
,
G.
,
2003
, “
Resonant Non-Linear Normal Modes—Part II: Activation/Orthogonality Conditions for Shallow Structural Systems
,”
Int. J. Non-Linear Mech.
,
38
(
6
), pp.
873
887
.
48.
Goncalves
,
P. J. P.
,
Brennan
,
M. J.
, and
Elliott
,
S. J.
,
2007
, “
Numerical Evaluation of High-Order Modes of Vibration in Uniform Euler–Bernoulli Beams
,”
J. Sound Vib.
,
301
(
3
), pp.
1035
1039
.
49.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2010
, “
The Dynamic Behavior of MEMS Arch Resonators Actuated Electrically
,”
Int. J. Non-Linear Mech.
,
45
(
7
), pp.
704
713
.
50.
Wells
,
R. L.
,
2001
, “
Using Shock Response Spectra to Design Motion Control Profiles for Flexible Structures
,”
J. Vib. Control
,
7
(
6
), pp.
905
921
.
You do not currently have access to this content.