This study presents the possible and effective output signals for the feedback vibration control of the smart blade section undergoing different aerodynamic conditions. Equations of motions of the smart blade section are described by a typical wing section model, leading to three vibration modes (flapwise mode, edgewise mode, and torsional mode). The aerodynamics is described by an unsteady aerodynamic model and aerodynamic effects of the microtab installed on the trailing-edge of the blade section. The equations of the aeroservoelastic model are summarized into state-space equation for analysis of output choice in the feedback system. All vibration modes are proved to be fully controllable with the microtab actuation. The numerical results show that the most effective output signal is the combination of flapwise velocity and torsional velocity for the system undergoing the attached flow and the combination of all three-mode velocities for the system undergoing the stall flow. In addition, the output choice for different microtab configurations is also analyzed. The effectiveness of the proposed output signals in vibration control is confirmed by the simulation results.

References

1.
Hansen
,
M. O. L.
,
Sorensen
,
J. N.
,
Voutsinas
,
S.
,
Sorensen
,
N.
, and
Madsen
,
H. Aa.
,
2006
, “
State of the Art in Wind Turbine Aerodynamics and Aeroelasticity
,”
Prog. Aerosp. Sci.
,
42
(
4
), pp.
285
330
.
2.
Lobitz
,
D. W.
,
2005
, “
Parameter Sensitivities Affecting the Flutter Speed of a MW-Sized Blade
,”
ASME J. Sol. Energy Eng.
,
127
(
4
), pp.
538
543
.
3.
Staino
,
A.
, and
Basu
,
B.
,
2013
, “
Dynamics and Control of Vibrations in Wind Turbines With Variable Rotor Speed
,”
Eng. Struct.
,
56
, pp.
58
67
.
4.
Librescu
,
L.
, and
Marzocca
,
P.
,
2005
, “
Advances in the Linear/Nonlinear Control of Aeroelastic Structural Systems
,”
Acta Mech.
,
178
, pp.
147
186
.
5.
van Dam
,
C. P.
,
Yen Nakafuji
,
D.
,
Bauer
,
C.
,
Chao
,
D.
, and
Standish
,
K.
,
2002
, “
Computational Design and Analysis of a Microtab Based Aerodynamic Loads Control System for Lifting Surfaces
,”
Proc. SPIE
,
4981
, pp.
28
39
.
6.
Baek
,
P.
,
Gaunaa
,
M.
,
Sørensen
,
N. N.
, and
Fuglsang
,
P.
,
2010
, “
Comparative Study of Distributed Active Load Control Concepts for Wind Turbine Blades
,”
Science Making Torque From Wind Conference
(
Torque '10
), Heraklion, Greece, June 28–30, pp.
611
617
.
7.
Wilson
,
D. G.
,
Berg
,
D. E.
,
Lobitz
,
D. W.
, and
Zayas
,
J. R.
,
2008
, “
Optimized Active Aerodynamic Blade Control for Load Alleviation on Large Wind Turbines
,”
AWEA Windpower Conference & Exhibition
, Houston, TX, June 1–4.
8.
Baker
,
J. P.
,
Standish
,
K. J.
, and
van Dam
,
C. P.
,
2007
, “
Two-Dimensional Wind Tunnel and Computational Investigation of a Microtab Modified Airfoil
,”
J. Aircr.
,
44
(
2
), pp.
563
572
.
9.
Nakafuji
,
D. T.
,
Van Dam
,
C. P.
,
Smith
,
R. L.
, and
Collins
,
S. D.
,
2001
, “
Active Load Control for Airfoils Using Microtabs
,”
ASME J. Sol. Energy Eng.
,
123
(
4
), pp.
282
289
.
10.
Maughmer
,
M. D.
, and
Bramesfeld
,
G.
,
2008
, “
Experimental Investigation of Gurney Flaps
,”
J. Aircr.
,
45
(
6
), pp.
2062
2067
.
11.
Standish
,
K. J.
,
2003
, “
Aerodynamic Analysis of Blunt Trailing Edge Airfoils & A Microtab-Based Load Control System
,”
M.S. thesis, University of California, Davis, CA
.
12.
Standish
,
K. J.
, and
van Dam
,
C. P.
,
2005
, “
Computational Analysis of a Microtab-Based Aerodynamic Load Control System for Rotor Blades
,”
J. Am. Helicopter Soc.
,
50
(
3
), pp.
249
258
.
13.
Barlas
,
T. K.
, and
van Kuik
,
G. A. M.
,
2010
, “
Review of State of the Art in Smart Rotor Control Research for Wind Turbines
,”
Prog. Aerosp. Sci.
,
46
(
1
), pp.
1
27
.
14.
Kallesoee
,
B. S.
,
2006
, “
A Low-Order Model for Analysing Effects of Blade Fatigue Load Control
,”
Wind Energy
,
9
(
5
), pp.
421
436
.
15.
Lackner
,
M. A.
, and
van Kuik
,
G. A.
,
2010
, “
A Comparison of Smart Rotor Control Approaches Using Trailing Edge Flap and Individual Pitch Control
,”
Wind Energy
,
13
, pp.
117
134
.
16.
Lackner
,
M. A.
, and
van Kuik
,
G. A.
,
2010
, “
The Performance of Wind Turbine Smart Rotor Control Approaches During Extreme Loads
,”
ASME J. Sol. Energy Eng.
,
132
(
1
), p.
010008
.
17.
Buhl
,
T.
,
Gaunaa
,
M.
, and
Bak
,
C.
,
2005
, “
Potential Load Reduction Using Airfoils With Variable Trailing Edge Geometry
,”
ASME J. Sol. Energy Eng.
,
127
(
4
), pp.
503
516
.
18.
Leishman
,
J. G.
, and
Beddoes
,
T. S.
,
1986
, “
A Generalized Model for Airfoil Unsteady Aerodynamic Behavior and Dynamic Stall Using Indicial Method
,”
42nd Annual Forum of the American Helicopter Society
, Washington, DC, June 2–5, pp.
243
265
.
19.
Leishman
,
J. G.
, and
Beddoes
,
T. S.
,
1989
, “
A Semi-Empirical Model for Dynamic Stall
,”
J. Am. Helicopter Soc.
,
34
(
3
), pp.
3
17
.
20.
Leishman
,
J. G.
,
1988
, “
Validation of Approximate Indicial Aerodynamic Functions for Two-Dimensional Subsonic Flow
,”
J. Aircr.
,
25
(
10
), pp.
914
922
.
21.
Hansen
,
M. H.
,
Gaunaa
,
M.
, and
Hadsen
,
H. A.
,
2004
, “
A Beddoes-Leishman Type Dynamic Stall Model in State-Space and Indicial Formulations
,”
Risø National Laboratory
, Roskilde, Denmark, Report No. Risø-R-1354.
22.
Larsen
,
J. W.
, and
Nielsen
,
S. R. K.
,
2006
, “
Non-Linear Dynamics of Wind Turbine Wings
,”
Int. J. Nonlinear Mech.
,
41
(
5
), pp.
629
643
.
23.
Ogata
,
K.
,
2009
,
Modern Control Engineering
, 5th ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
24.
Panos
,
J. A.
, and
Anthony
,
N. M.
,
2007
,
A Linear Systems Primer
, 1st ed.,
Birkhauser
,
Boston
.
You do not currently have access to this content.