Flexoelectricity possesses two gradient-dependent electromechanical coupling effects: the direct flexoelectric effect and the converse flexoelectric effect. The former can be used for sensing and energy generation; the latter can be used for ultraprecision actuation and control applications. Due to the direct flexoelectricity and large deformations, theoretical fundamentals of a generic nonlinear distributed flexoelectric double-curvature shell energy harvester are proposed and evaluated in this study. The generic flexoelectric shell energy harvester is made of an elastic double-curvature shell laminated with flexoelectric patches and the shell experiences large oscillations, such that the von Karman geometric nonlinearity occurs. Flexoelectric output voltages and energies across a resistive load are evaluated using the current model in the closed-circuit condition when the shell is subjected to harmonic excitations and its steady-state voltage and power outputs are also calculated. The generic flexoelectric shell energy harvesting theory can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and nonshell (beam, plate, ring, arch, etc.) distributed harvesters and the simplification procedures are demonstrated in three cases, i.e., a cylindrical shell, a circular ring and a beam harvester. Other shell and nonshell flexoelectric energy harvesters with standard geometries can also be defined using their distinct two Lamé parameters and two curvature radii.

References

1.
Kogan
,
S. M.
,
1964
, “
Piezoelectric Effect During Inhomogeneous Deformation and Acoustic Scattering of Carriers in Crystals
,”
Sov. Phys. Solid State
,
5
(
10
), pp.
2069
2070
.
2.
Ma
,
W. H.
, and
Cross
,
L. E.
,
2002
, “
Flexoelectric Polarization of Barium Strontium Titanate in the Paraelectric State
,”
Appl. Phys. Lett.
,
81
(
18
), pp.
3440
3442
.
3.
Majdoub
,
M. S.
,
Sharma
,
P.
, and
Cagin
,
T.
,
2008
, “
Enhanced Size-Dependent Piezoelectricity and Elasticity in Nanostructures Due to the Flexoelectric Effect
,”
Phys. Rev. B
,
77
(
12
), p.
125424
.
4.
Ma
,
W. H.
,
2008
, “
A Study of Flexoelectric Coupling Associated Internal Electric Field and Stress in Thin Film Ferroelectrics
,”
Phys. Status Solidi B
,
245
(
4
), pp.
761
768
.
5.
Ma
,
W. H.
, and
Cross
,
L. E.
,
2001
, “
Observation of the Flexoelectric Effect in Relaxor Ceramics
,”
Appl. Phys. Lett.
,
78
(
19
), pp.
2920
2921
.
6.
Fu
,
J. Y.
,
Zhu
,
W. Y.
,
Li
,
N.
, and
Cross
,
L. E.
,
2006
, “
Experimental Studies of the Converse Flexoelectric Effect Induced by Inhomogeneous Electric Field in a Barium Strontium Titanate Composition
,”
J. Appl. Phys.
,
100
(
2
), p.
024112
.
7.
Baskaran
,
S.
,
He
,
X. T.
,
Chen
,
Q.
, and
Fu
,
J. Y.
,
2011
, “
Experimental Studies on the Direct Flexoelectric Effect in α-Phase Polyvinylidene Fluoride Films
,”
Appl. Phys. Lett.
,
98
(
24
), p.
242901
.
8.
Tagantsev
,
A. K.
,
1986
, “
Piezoelectricity and Flexoelectricity in Crystalline Dielectrics
,”
Phys. Rev. B
,
34
(
8
), pp.
5883
5889
.
9.
Mindlin
,
R. D.
,
1969
, “
Continuum and Lattice Theories of Influence of Electromechanical Coupling on Capacitance of Thin Dielectric Films
,”
Int. J. Solids Struct.
,
5
(
11
), pp.
1197
1208
.
10.
Tagantsev
,
A. K.
,
Meunier
,
V.
, and
Sharma
,
P.
,
2009
, “
Novel Electromechanical Phenomena at the Nanoscale: Phenomenological Theory and Atomistic Modeling
,”
MRS Bull.
,
34
(09), pp.
643
647
.
11.
Marvan
,
M.
, and
Havranck
,
A.
,
1988
, “
Flexoelectric Effect in Elastomers
,”
Prog. Colloid Polym. Sci.
,
78
, pp.
33
36
.
12.
Zhang
,
X. F.
,
Hu
,
S. D.
, and
Tzou
,
H. S.
,
2013
, “
Flexoelectric Energy Harvesting of Circular Rings
,”
ASME
Paper No. DETC2013-12769.
13.
Hu
,
S. D.
,
Li
,
H.
, and
Tzou
,
H. S.
,
2013
, “
Flexoelectric Responses of Circular Rings
,”
ASME J. Vib. Acoust.
,
135
(
2
), p.
021003
.
14.
Hu
,
S. D.
,
Li
,
H.
, and
Tzou
,
H. S.
,
2014
, “
Comparison of Flexoelectric and Piezoelectric Dynamic Signal Responses on Flexible Rings
,”
J. Intell. Mater. Syst. Struct.
,
25
(
7
), pp.
832
844
.
15.
Tzou
,
H. S.
,
Rao
,
Z.
, and
Hu
,
S. D.
,
2013
, “
Diagonal Flexoelectric Sensors and Sensitivity Analysis on Cylindrical Shells
,”
ASME
Paper No. DETC2013-12534.
16.
Hu
,
S. D.
,
Li
,
H.
, and
Tzou
,
H. S.
,
2011
, “
Static Nano-Control of Cantilever Beams Using the Inverse Flexoelectric Effect
,”
ASME
Paper No. IMECE2011-65123.
17.
Zhang
,
X. F.
,
Li
,
H.
, and
Tzou
,
H. S.
,
2014
, “
Vibration Control of a Cantilever Beam by Metal-Core Flexoelectric and Piezoelectric Fibers
,”
ASME
Paper No. IMECE2014-37772.
18.
Zhang
,
X. F.
,
Hu
,
S. D.
, and
Tzou
,
H. S.
,
2014
, “
A Generic Double-Curvature Piezoelectric Shell Energy Harvester: Linear/Nonlinear Theory and Applications
,”
J. Sound Vib.
,
333
(
26
), pp.
7286
7298
.
19.
Tzou
,
H. S.
, and
Bao
,
Y.
,
1997
, “
Nonlinear Piezothermoelasticity and Multi-Field Actuations, Part 1: Nonlinear Anisotropic Piezothermoelastic Shell Laminates
,”
ASME J. Vib. Acoust.
,
119
(
3
), pp.
374
381
.
20.
Howard
,
R. V.
,
Chai
,
W. K.
, and
Tzou
,
H. S.
,
2001
, “
Modal Voltages of Linear and Non-Linear Structures Using Distributed Artificial Neurons
,”
Mech. Syst. Signal Process.
,
15
(
3
), pp.
629
640
.
21.
Tzou
,
H. S.
,
1993
,
Piezoelectric Shells: Distributed Sensing and Control
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
22.
Meeker
,
T.
,
1996
, “
ANSI/IEEE Standard on Piezoelectricity
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
43
(
5
), pp.
717
772
.
23.
Soedel
,
W.
,
1993
,
Vibrations of Shells and Plates
,
Marcel Dekker
,
New York
.
24.
Hu
,
S. D.
,
Li
,
H.
, and
Tzou
,
H. S.
,
2015
, “
Distributed Flexoelectric Structural Sensing: Theory and Experiment
,”
J. Sound Vib.
,
348
(
3
), pp.
126
136
.
You do not currently have access to this content.