Elastic metamaterials have been extensively investigated due to their significant effects on controlling propagation of elastic waves. One of the most interesting properties is the generation of band gaps, in which subwavelength elastic waves cannot propagate through. In the study, a new class of active elastic metamaterials with negative capacitance piezoelectric shunting is presented. We first investigated dispersion curves and band gap control of an active mass-in-mass lattice system. The unit cell of the mass-in-mass lattice system consists of the inner masses connected by active linear springs to represent negative capacitance piezoelectric shunting. It was demonstrated that the band gaps can be actively controlled and tuned by varying effective stiffness constant of the linear spring through appropriately selecting the value of negative capacitance. The promising application was then demonstrated in the active elastic metamaterial plate integrated with the negative capacitance shunted piezoelectric patches for band gap control of both the longitudinal and bending waves. It can be found that the location and the extent of the induced band gap of the elastic metamaterial can be effectively tuned by using shunted piezoelectric patch with different values of negative capacitance, especially for extremely low-frequency cases.

References

1.
Pendry
,
J. B.
,
Holden
,
A. J.
,
Robbins
,
D. J.
, and
Stewart
,
W. J.
,
1999
, “
Magnetism From Conductors and Enhanced Nonlinear Phenomena
,”
IEEE Trans. Microwave Theory Tech.
,
47
(11)
, pp.
2075
2084
.10.1109/22.798002
2.
Smith
,
D. R.
,
Padilla
,
W. J.
,
Vier
,
D. C.
,
Nemat-Nasser
,
S. C.
, and
Schultz
,
S.
,
2000
, “
Composite Medium With Simultaneously Negative Permeability and Permittivity
,”
Phys. Rev. Lett.
,
84
(18)
, pp.
4184
4187
.10.1103/PhysRevLett.84.4184
3.
Liu
,
Z. Y.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2005
, “
Analytic Model of Phononic Crystals With Local Resonances
,”
Phys. Rev. B
,
71
(1),
p
. 014103.10.1103/PhysRevB.71.014103
4.
Fang
,
N.
,
Xi
,
D.
,
Xu
,
J.
,
Ambati
,
M.
,
Srituravanich
,
W.
,
Sun
,
C.
, and
Zhang
,
X.
,
2006
, “
Ultrasonic Metamaterials With Negative Modulus
,”
Nature Mater.
,
5
(6)
, pp.
452
456
.10.1038/nmat1644
5.
Huang
,
H. H.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2009
, “
On the Negative Effective Mass Density in Acoustic Metamaterials
,”
Int. J. Eng. Sci.
,
47
(4)
, pp.
610
617
.10.1016/j.ijengsci.2008.12.007
6.
Yao
,
S. S.
,
Zhou
,
X. N.
, and
Hu
,
G. K.
,
2008
, “
Experimental Study on Negative Effective Mass in a 1D Mass–Spring System
,”
New J. Phys.
,
10
(4)
, p.
043020
.10.1088/1367-2630/10/4/043020
7.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(5485)
, pp.
1734
1736
.10.1126/science.289.5485.1734
8.
Yang
,
Z.
,
Mei
,
J.
,
Yang
,
M.
,
Chan
,
N. H.
, and
Sheng
,
P.
,
2008
, “
Membrane-Type Acoustic Metamaterial With Negative Dynamic Mass
,”
Phys. Rev. Lett.
,
101
(20)
, p.
204301
.10.1103/PhysRevLett.101.204301
9.
Mei
,
J.
,
Ma
,
G.
,
Yang
,
M.
,
Yang
,
Z.
,
Wen
,
W.
, and
Sheng
,
P.
,
2012
, “
Dark Acoustic Metamaterials as Super Absorbers for Low-Frequency Sound
,”
Nat. Commun.
,
3
, p.
756
.10.1038/ncomms1758
10.
Liu
,
X. N.
,
Hu
,
G. K.
,
Huang
,
G. L.
, and
Sun
,
C. T.
,
2011
, “
An Elastic Metamaterial With Simultaneously Negative Mass Density and Bulk Modulus
,”
Appl. Phys. Lett.
,
98
(25),
p
. 251907.10.1063/1.3597651
11.
Christensen
,
J.
, and
Abajo
,
F. J. G.
,
2012
, “
Negative Refraction and Backward Waves in Layered Acoustic Metamaterials
,”
Phys. Rev. B
,
86
(2)
, p.
024301
.10.1103/PhysRevB.86.024301
12.
Lin
,
S. S.
,
Tittmann
,
B. R.
, and
Huang
,
T. J.
,
2012
, “
Design of Acoustic Beam Aperture Modifier Using Gradient-Index Phononic Crystals
,”
J. Appl. Phys.
,
111
(12)
, p.
123510
.10.1063/1.4729803
13.
Yan
,
X.
,
Zhu
,
R.
,
Huang
,
G. L.
, and
Yuan
,
F. G.
,
2013
, “
Focusing Guided Waves Using Surface Bonded Elastic Metamaterials
,”
Appl. Phys. Lett.
,
103
(12)
, p.
121901
.10.1063/1.4821258
14.
Wu
,
Y.
,
Lai
,
Y.
, and
Zhang
,
Z. Q.
,
2011
, “
Elastic Metamaterials With Simultaneously Negative Effective Shear Modulus and Mass Density
,”
Phys. Rev. Lett.
,
107
(10)
, p.
105506
.10.1103/PhysRevLett.107.105506
15.
Lai
,
Y.
,
Wu
,
Y.
,
Sheng
,
P.
, and
Zhang
,
Z. Q.
,
2011
, “
Hybrid Elastic Solids
,”
Nature Mater.
,
10
(8)
, pp.
620
624
.10.1038/nmat3043
16.
Huang
,
H. H.
, and
Sun
,
C. T.
,
2009
, “
Wave Attenuation Mechanism in an Acoustic Metamaterial With Negative Effective Mass Density
,”
New J. Phys.
,
11
(1)
, p.
013003
.10.1088/1367-2630/11/1/013003
17.
Zhu
,
R.
,
Liu
,
X. N.
,
Hu
,
G. K.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2013
, “
An Chiral Elastic Metamaterial Beam for Broadband Vibration Suppression
,”
J. Sound Vib.
,
333
(10)
, pp.
2759
2773
.10.1016/j.jsv.2014.01.009
18.
Liu
,
Y.
,
Sun
,
X. Z.
,
Jiang
,
W. Z.
, and
Gu
,
Y.
,
2014
, “
Tuning of Bandgap Structures in Three-Dimensional Kagome-Sphere Lattice
,”
ASME J. Vib. Acoust.
,
136
(2)
, p.
021016
.10.1115/1.4026211
19.
Pai
,
P. F.
,
2010
, “
Metamaterial-Based Broadband Elastic Wave Absorber
,”
J. Intell. Mater. Syst. Struct.
,
21
(5)
, pp.
517
528
.10.1177/1045389X09359436
20.
Tang
,
J.
, and
Wang
,
K. W.
,
1999
, “
Vibration Control of Rotationally Periodic Structures Using Passive Piezoelectric Shunt Networks and Active Compensation
,”
ASME J. Vib. Acoust.
,
121
(3)
, pp.
379
390
.10.1115/1.2893991
21.
Tang
,
J.
, and
Wang
,
K. W.
,
2001
, “
Active-Passive Hybrid Piezoelectric Networks for Vibration Control: Comparisons and Improvement
,”
Smart Mater. Struct.
,
10
(4)
, pp.
794
806
.10.1088/0964-1726/10/4/325
22.
Forward
,
R. L.
,
1979
, “
Electronic Damping of Vibrations in Optical Structures
,”
J. Appl. Opt.
,
18
(5)
, pp.
690
697
.10.1364/AO.18.000690
23.
Hagood
,
N. W.
, and
Flotow
,
A. V.
,
1991
, “
Damping of Structural Vibrations With Piezoelectric Materialsand Passive Electrical Networks
,”
J. Sound Vib.
,
146
(2)
, pp.
243
268
.10.1016/0022-460X(91)90762-9
24.
Mokry
,
P.
,
Fukada
,
E.
, and
Yamamoto
,
K.
,
2003
, “
Sound Absorbing System as an Application of the Active Elasticity Control Technique
,”
J. Appl. Phys.
,
94
(11)
, pp.
7356
7362
.10.1063/1.1625100
25.
Airoldi
,
L.
, and
Ruzzene
,
M.
,
2011
, “
Design of Tunable Acoustic Metamaterials Through Periodic Arrays of Resonant Shunted Piezos
,”
New J. Phys.
,
13
(11)
, p.
113010
.10.1088/1367-2630/13/11/113010
26.
Deü
,
J. F.
,
Larbi
,
W.
,
Ohayon
,
R.
, and
Sampaio
,
R.
,
2014
, “
Piezoelectric Shunt Vibration Damping of Structural-Acoustic Systems: Finite Element Formulation and Reduced-Order Model
,”
ASME J. Vib. Acoust.
,
136
(3)
, p.
031007
.10.1115/1.4027133
27.
Chen
,
S. B.
,
Wen
,
J. H.
,
Yu
,
D. L.
,
Wang
,
G.
, and
Wen
,
X. S.
,
2011
, “
Band Gap Control of Phononic Beam With Negative Capacitance Piezoelectric Shunt
,”
Chin. Phys. B
,
20
(1)
, p.
014301
.10.1088/1674-1056/20/1/014301
28.
Akl
,
W.
, and
Baz
,
A.
,
2013
, “
Active Acoustic Metamaterial With Simultaneously Programmable Density and Bulk Modulus
,”
ASME J. Vib. Acoust.
,
135
(3)
, p.
031001
.10.1115/1.4023141
29.
Behrens
,
S.
,
Fleming
,
A. J.
, and
Moheimani
,
S. R.
,
2003
, “
A Broadband Controller for Shunt Piezoelectric Damping of Structural Vibration
,”
Smart Mater. Struct.
,
12
(1)
, pp.
18
28
.10.1088/0964-1726/12/1/303
30.
Park
,
C.
, and
Park
,
H.
,
2003
, “
Multiple-Mode Structural Vibration Control Using Negative Capacitive Shunt Damping
,”
J. Mech. Sci. Technol.
,
17
(11), pp.
1650
1658
.10.1007/BF02983594
31.
Beck
,
B.
,
Cunefare
,
K.
,
Ruzzene
,
M.
, and
Collet
,
M.
,
2011
, “
Experimental Analysis of a Cantilever Beam With a Shunted Piezoelectric Periodic Array
,”
J. Intell. Mater. Syst. Struct.
,
22
(11)
, pp.
1177
1187
.10.1177/1045389X11411119
32.
Date
,
M.
,
Kutani
,
M.
, and
Sakai
,
S.
,
2000
, “
Electrically Controlled Elasticity Utilizing Piezoelectric Coupling
,”
J. Appl. Phys.
,
87
(2)
, pp.
863
868
.10.1063/1.371954
33.
Imoto
,
K.
,
Nishiura
,
M.
,
Yamamoto
,
K.
,
Date
,
M.
,
Fukuda
,
E.
, and
Tajitsu
,
Y.
,
2005
, “
Elasticity Control of Piezoelectric Lead Zirconate Titanate (PZT) Materials Using Negative-Capacitance Circuits
,”
Jpn. J. Appl. Phys.
,
44
(9B)
, pp.
7019
7023
.10.1143/JJAP.44.7019
34.
Zhu
,
R.
,
Huang
,
G. L.
,
Huang
,
H. H.
, and
Sun
,
C. T.
,
2011
, “
Experimental and Numerical Study of Guided Wave Propagation in a Thin Metamaterial Plate
,”
Phys. Lett. A
,
375
(30–31)
, pp.
2863
2867
.10.1016/j.physleta.2011.06.006
You do not currently have access to this content.