A new method based on the wavenumber space integration algorithm is proposed in order to obtain mode count and modal density of circular cylindrical shells. Instead of the simplified equation of motion, the exact equation is applied in mode count calculations. Modal plots are changed significantly in the k-space when using the exact equation. Mode repetition in cylindrical shells is represented by additional mode count curves in the k-space. On the other hand, a novel technique is presented in order to implement boundary condition effects in mode count and modal density calculations. Integrating these two significant corrections, a modified wavenumber space integration (MWSI) method is developed. Mode count and modal densities of three shells with different geometrical and acoustical properties are obtained using the MWSI method and conventional WSI. Results are verified using the exact mode count calculations. Moreover, effects of geometrical properties are studied on mode count plots in the k-space. Modal densities are obtained for cylindrical shells of different lengths, radii, and thicknesses. Finally, modal densities of cylindrical shells are compared to flat plates of the same size and boundary condition. Interesting results are obtained which will contribute in calculation of acoustic radiation efficiency and sound transmission in cylindrical shells.

References

1.
Maa
,
D. Y.
,
1939
, “
Distribution of Eigentones in a Rectangular Chamber at Low Frequency Range
,”
J. Acoust. Soc. Am.
,
10
(
3
), pp.
235
238
.10.1121/1.1915981
2.
Bolt
,
R. H.
,
1939
, “
Frequency Distribution of Eigentones in a Three-Dimensional Continuum
,”
J. Acoust. Soc. Am.
,
10
(
3
), pp.
228
234
.10.1121/1.1915980
3.
Roe
,
G. M.
,
1941
, “
Frequency Distribution of Normal Modes
,”
J. Acoust. Soc. Am.
,
13
(
1
), pp.
1
7
.10.1121/1.1916136
4.
Morse
,
P. M.
, and
Bolt
,
R. H.
,
1944
, “
Sound Waves in Rooms
,”
Rev. Mod. Phys.
,
16
(
2
), pp.
69
150
.10.1103/RevModPhys.16.69
5.
Lord Rayleigh
,
1945
,
The Theory of Sound
, 2nd ed., reprinted,
Dover
,
New York
.
6.
Lyon
,
R. H.
,
1975
,
Statistical Energy Analysis of Dynamical Systems
,
MIT Press
,
Cambridge, MA
.
7.
Courant
,
R.
, and
Hilbert
D.
,
1953
,
Methods of Mathematical Physics
, Vol.
1
,
Interscience Publishers, Inc.
,
New York
.
8.
Bolotin
,
V. V.
,
1960
, “
The Edge Effect in the Oscillation of Shells
,”
PMM, Moscow
,
24
(
5
), pp.
831
843
.
9.
Bolotin
,
V. V.
,
1962
, “
An Asymptotic Method for the Study of the Problem of Eigenvalues for Rectangular Regions
,”
Problems of Continuum Mechanics
,
J. R. M.
Radok
, ed.,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
, pp.
56
68
.
10.
Bolotin
,
V. V.
,
1963
, “
On the Density of the Distribution of Natural Frequencies of Thin Elastic Shells
,”
PMM, Moscow
,
27
(
2
), pp.
362
364
.
11.
Heckl
,
M.
,
1962
, “
Vibrations of Point-Driven Cylindrical Shells
,”
J. Acoust. Soc. Am.
,
34
(
10
), pp.
1553
1557
.10.1121/1.1909043
12.
Szechenyi
,
E.
,
1971
, “
Modal Densities and Radiation Efficiencies of Unstiffened Cylinders Using Statistical Methods
,”
J. Sound Vib.
,
19
(
1
), pp.
65
81
.10.1016/0022-460X(71)90423-8
13.
Maymon
,
G.
,
1975
, “
Modal Densities of Stiffened, Axially Loaded Cylindrical Shells
,”
J. Sound Vib.
,
42
(
1
), pp.
115
127
.10.1016/0022-460X(75)90306-5
14.
Ramachandran
,
P.
, and
Narayanan
,
S.
,
2007
, “
Evaluation of Modal Density, Radiation Efficiency and Acoustic Response of Longitudinally Stiffened Cylindrical Shell
,”
J. Sound Vib.
,
304
(
1–2
), pp.
154
174
.10.1016/j.jsv.2007.02.020
15.
Langley
,
R. S.
,
1992
, “
The Modal Density and Mode Count of Thin Cylinders and Curved Panels
,”
J. Sound Vib.
,
169
(
1
), pp.
43
53
.10.1006/jsvi.1994.1005
16.
Manning
,
J. E.
, and
Maidanik
,
G.
,
1964
, “
Radiation Properties of Cylindrical Shells
,”
J. Acoust. Soc. Am.
,
36
(
9
), pp.
1691
1698
.10.1121/1.1919266
17.
Fahy
,
F.
,
1987
,
Sound and Structural Vibration: Radiation, Transmission and Response
,
Academic Press
,
New York
.
18.
Wang
,
C.
, and
Lai
,
J. C. S.
,
2000
, “
The Sound Radiation Efficiency of Finite Length Acoustically Thick Circular Cylindrical Shells Under Mechanical Excitation I: Theoretical Analysis
,”
J. Sound Vib.
,
232
(
2
), pp.
431
447
.10.1006/jsvi.1999.2749
19.
Wang
,
C.
, and
Lai
,
J. C. S.
,
2000
, “
The Sound Radiation Efficiency of Finite Length Circular Cylindrical Shells Under Mechanical Excitation II: Limitations of the Infinite Length Model
,”
J. Sound Vib.
,
241
(
2
), pp.
825
838
.10.1006/jsvi.2000.3338
20.
Xie
,
G.
,
Thomson
,
D. J.
, and
Jones
,
C. J. C.
,
2004
, “
Mode Count and Modal Density of Structural Systems: Relationships With Boundary Conditions
,”
J. Sound Vib.
,
274
(
3–5
), pp.
621
651
.10.1016/j.jsv.2003.05.008
21.
Farshidianfar
,
A.
,
Farshidianfar
,
M. H.
,
Crocker
,
M. J.
, and
Smith
,
W. O.
,
2011
, “
Vibration Analysis of Long Cylindrical Shells Using Acoustical Excitation
,”
J. Sound Vib.
,
330
(
14
), pp.
3381
3399
.10.1016/j.jsv.2011.02.002
22.
Leissa
,
W.
,
1973
,
Vibration of Shells (NASA SP-288)
,
U.S. Government Printing Office
,
Washington, DC
.
23.
Soedel
,
W.
,
1980
, “
A New Frequency Formula for Closed Circular Cylindrical Shells for a Large Variety of Boundary Conditions
,”
J. Sound Vib.
,
70
(
3
), pp.
309
317
.10.1016/0022-460X(80)90301-6
24.
Oliazadeh
,
P.
,
Farshidianfar
,
M. H.
, and
Farshidianfar
,
A.
,
2013
, “
Exact Analysis of Resonance Frequency and Mode Shapes of Isotropic and Laminated Composite Cylindrical Shells; Part I: Analytical Studies
,”
J. Mech. Sci. Technol.
,
27
(
12
), pp.
3635
3643
.10.1007/s12206-013-0905-1
25.
Oliazadeh
,
P.
,
Farshidianfar
,
M. H.
, and
Farshidianfar
,
A.
,
2013
, “
Exact Analysis of Resonance Frequency and Mode Shapes of Isotropic and Laminated Composite Cylindrical Shells; Part II: Parametric Studies
,”
J. Mech. Sci. Technol.
,
27
(
12
), pp.
3645
3649
.10.1007/s12206-013-0907-z
You do not currently have access to this content.