This paper presents modeling and analysis of a piezoelectric mounted rotary flexible beam that can be used as an energy scavenger for rotary motion applications. The energy harvester system consists of a piezoelectric bimorph cantilever beam with a tip mass mounted on a rotating hub. Assuming Euler–Bernoulli beam equations and considering the effect of a piezoelectric transducer, equations of motion are derived using the Lagrangian approach followed by relationships describing the harvested power. The equations provide a quantitative description of how the hub acceleration and gravity due to the tip mass contribute power to the energy harvester. In particular, expressions describing optimum load resistance and the maximum power that can be harvested using the proposed system are derived. Numerical simulations are performed to show the performance of the harvester by obtaining tip velocities and electrical output voltages for a range of electrical load resistances and rotational speeds. It is shown that by proper sizing and parameter selection, the proposed system can supply enough energy for operating wireless sensors in rotating mechanisms such as tires and turbines.

1.
Wang
,
W.
,
Ismail
,
F.
, and
Golnaraghi
,
F.
, 2004, “
A Neuro-Fuzzy Approach to Gear System Monitoring
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
12
, pp.
710
723
.
2.
Williams
,
C. B.
, and
Yates
,
R. B.
, 1996, “
Analysis of a Micro-Electric Generator for Microsystems
,”
Sens. Actuators, A
0924-4247,
52
, pp.
8
11
.
3.
Roundy
,
S.
,
Wright
,
P.
, and
Rabaey
,
J.
, 2003, “
A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes
,”
Comput. Commun.
0140-3664,
26
, pp.
1131
1144
.
4.
Priya
,
S.
, 2007, “
Advances in Energy Harvesting Using Low Profile Piezoelectric Transducers
,”
J. Electroceram.
1385-3449,
19
, pp.
167
184
.
5.
Shenck
,
N. S.
, and
Paradiso
,
J. A.
, 2001, “
Energy Scavenging With Shoe-Mounted Piezoelectrics
,”
IEEE MICRO
0272-1732,
21
(
3
), pp.
30
42
.
6.
Platt
,
S. R.
,
Farritor
,
S.
,
Garvin
,
K.
, and
Haider
,
H.
, 2005, “
The Use of Piezoelectric Ceramics for Electric Power Generation Within Orthopedic Implants
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
10
(
4
), pp.
455
461
.
7.
Priya
,
S.
,
Chen
,
C. T.
,
Fye
,
D.
, and
Zahnd
,
J.
, 2005, “
Piezoelectric Windmill: A Novel Solution to Remote Sensing
,”
Jpn. J. Appl. Phys., Part 2
0021-4922,
44
, pp.
L104
L107
.
8.
Khameneifar
,
F.
, and
Arzanpour
,
S.
, 2008, “
Energy Harvesting From Pneumatic Tires Using Piezoelectric Transducers
,”
ASME Conference Proceedings of SMASIS 2008
, Paper No. 426, pp.
333
339
.
9.
Sodano
,
H. A.
,
Park
,
G.
, and
Inman
,
D. J.
, 2004, “
Estimation of Electric Charge Output for Piezoelectric Energy Harvesting
,”
Strain J.
,
40
, pp.
49
58
.
10.
Erturk
,
A.
, and
Inman
,
D. J.
, 2008, “
On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
19
, pp.
1311
1325
.
11.
Erturk
,
A.
, and
Inman
,
D. J.
, 2008, “
Issues in Mathematical Modeling of Piezoelectric Energy Harvesters
,”
Smart Mater. Struct.
0964-1726,
17
, p.
065016
.
12.
Erturk
,
A.
, and
Inman
,
D. J.
, 2009, “
An Experimentally Validated Bimorph Cantilever Model for Piezoelectric Energy Harvesting From Base Excitations
,”
Smart Mater. Struct.
0964-1726,
18
, p.
025009
.
13.
Erturk
,
A.
,
Tarazaga
,
P. A.
,
Farmer
,
J. R.
, and
Inman
,
D. J.
, 2009, “
Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams
,”
ASME J. Vibr. Acoust.
0739-3717,
131
, p.
011010
.
14.
Lee
,
H. P.
, 1997, “
Dynamic Stability of a Rotating Cantilever Beam With In-Plane Base Acceleration
,”
Eng. Comput.
0177-0667,
14
(
4
), pp.
471
480
.
15.
Yoo
,
H. H.
, and
Shin
,
S. H.
, 1998, “
Vibration Analysis of Rotating Cantilever Beams
,”
J. Sound Vib.
0022-460X,
212
(
5
), pp.
807
828
.
16.
Kermani
,
M. R.
,
Moallem
,
M.
, and
Patel
,
R. V.
, 2004, “
Parameter Selection and Control Design for Vibration Suppression Using Piezoelectric Transducers
,”
Control Eng. Pract.
0967-0661,
12
, pp.
1005
1015
.
17.
duToit
,
N. E.
,
Wardle
,
B. L.
, and
Kim
,
S. G.
, 2005, “
Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters
,”
Integr. Ferroelectr.
1058-4587,
71
, pp.
121
160
.
18.
Renno
,
J. M.
,
Daqaq
,
M. F.
, and
Inman
,
D. J.
, 2009, “
On the Optimal Energy Harvesting From a Vibration Source
,”
J. Sound Vib.
0022-460X,
320
, pp.
386
405
.
You do not currently have access to this content.