This paper discusses the optimal vibration feedback control of an Euler-Bernoulli beam from a viewpoint of active wave control making all structural modes inactive (more than suppressed). Using a transfer matrix method, the paper derives two kinds of optimal control laws termed “active sink” which inactivates all structural modes; one obtained by eliminating reflected waves and the other by transmitted waves at a control point. Moreover, the characteristic equation of the active sink system is derived, the fundamental properties being investigated. Towards the goal of implementing the optimal control law that is likely to be non-causal, a “classical” velocity feedback control law (Balas, 1979) widely used in a vibration control engineering is applied, revealing a substantial shortcoming. Introduction of a “classical” displacement feedback to the velocity is found to realize the optimal control law in a restricted frequency range. Finally, two kinds of stability verification for closed feedback control systems are presented for distributed parameter structures.

1.
Balas
M. J.
,
1979
, “
Direct Velocity Feedback Control of Large Space Structures
,”
J. Guidance
, Vol.
2
, No.
3
, pp.
252
253
.
2.
Gould
L. A.
and
Murray-Lasso
M. A.
,
1966
, “
On the Modal Control of Distributed Systems with Distributed Feedback
,”
IEEE Trans. Automatic Control
, Vol.
AC-11
, No.
4
, pp.
729
737
.
3.
Kosut
R. L.
,
Salzwedel
H.
, and
Emami-Naeini
A.
,
1983
, “
Robust Control of Flexible Spacecraft
,”
J. Guidance
, Vol.
6
, No.
2
, pp.
104
111
.
4.
Mace
B. R.
, “
Active Control of Flexural Vibrations
,” 1987,
J. Sound and Vibration
, Vol.
114
, No.
2
, pp.
253
270
.
5.
MacMartin
D. G.
, and
Hall
S. R.
,
1990
, “
Control of Uncertain Structures Using an H-infinity Power Flow Approach
,”
J. Guidance
, Vol.
14
, No.
3
, pp.
521
530
.
6.
Meirovitch
L.
, and
Baruh
H.
,
1985
, “
The Implementation of Modal Filters for Control of Structures
,”
J. Guidance
, Vol.
8
, No.
6
, pp.
707
716
.
7.
Miller
D. W.
,
Hall
S. R.
, and
von Flotow
A. H.
,
1990
, “
Optimal Control Power Flow at Structural Junctions
,”
J. Sound and Vibration
, Vol.
140
, No.
3
, pp.
475
497
.
8.
Noiseux
D. U.
,
1970
, “
Measurement of Power Flow in Uniform Beams and Plates
,”
J. of Acoustical Society of America
, Vol.
47
, No.
2
, pp.
238
247
.
9.
Pavic
G.
,
1976
, “
Measurement of Structure Borne Wave Intensity, Part 1: Formulation of the Methods
,
J. Sound and Vibration
, Vol.
49
, No.
2
, pp.
221
230
.
10.
Pestel, E. C., and Leckie, F. A., 1963, Matrix Methods in Elastomechanics, McGraw-Hill Book Co.
11.
Procopio, G. M., and Hubbard, Jr., J. E., 1987, “Active Damping of a Bernoulli-Euler Beam via End Point Impedance Control Using Distributed Parameter Techniques,” ASME Design Technology Conference, 35–46.
12.
Rosenbrock
H. H.
,
1962
, “
Distinctive Problems of Process Control
,”
Chemical Engineering Progress
, Vol.
58
, No.
9
, pp.
43
50
.
13.
Simon
J. D.
, and
Mitter
S. K.
,
1968
, “
A Theory of Modal Control
,” 1968,
Information and Control
, Vol.
13
, pp.
316
353
.
14.
Snowdon, J. C., 1968, Vibration and Shock in Damped Mechanical System, John Wilen & Sons.
15.
Tanaka
N.
, and
Kikushima
Y.
,
1991
, “
Active Wave Control of a Flexible Beam (Proposition of the Active Sink Method)
,”
JSME International Journal
, Vol.
34
, No.
2
, pp.
159
167
.
16.
Tanaka
N.
, and
Kikushima
Y.
,
1992
, “
Active Wave Control of a Flexible Beam (Fundamental Characteristics of an Active Sink System and its Verification)
,”
JSME International Journal
, Vol.
35
, No.
2
, pp.
236
244
.
17.
Vaughan, D. R., 1968, “Application of Distributed Parameter Concepts to Dynamic Analysis and Control of Bending Vibrations,” ASME, Journal of Basic Engineering, June, pp. 157–166.
18.
von Flotow
A. H.
, and
Schafer
J. B.
,
1986
, “
Wave Absorbing Controllers for a Flexible Beam
,”
Guidance
, Vol.
9
, No.
6
, pp.
673
680
.
This content is only available via PDF.
You do not currently have access to this content.