Abstract

Small supersonic vehicle concepts used as research platforms to test new aerospace technologies, such as advanced propulsion systems or large sensor payloads, require major modifications to conventional, large-scale, manned, supersonic airframe design. High-fidelity numerical simulation of these concepts in academic settings often requires the use of in-house or available open-source tools instead of expensive commercial software or those with export-control restrictions. A verification and validation analysis of two widely-used open-source compressible-flow solvers, rhoCentralFoam (rCF) and su2, is performed for several flow problems relevant to the supersonic aerodynamics of small-scale, autonomous aircraft concepts. The one-dimensional shock tube problem, two-dimensional supersonic turbulent boundary layer, and three-dimensional delta wing are simulated with both solvers. The effects of flux scheme, flux limiters, and Courant–Friedrichs–Lewy (CFL) number on solution accuracy, stability, and solver speed are assessed. The solvers' limitations and their usefulness as supersonic aircraft design tools in a holistic sense are discussed.

References

1.
Johnson
,
F. T.
,
Tinoco
,
E. N.
, and
Yu
,
N. J.
,
2005
, “
Thirty Years of Development and Application of CFD at Boeing Commercial Airplanes, Seattle
,”
Comput. Fluids
,
34
(
10
), pp.
1115
1151
.10.1016/j.compfluid.2004.06.005
2.
Jung
,
T.
,
Starkey
,
R.
, and
Argrow
,
B.
,
2011
, “
Feasibility Study of Using a Small-Scale UAS for Sonic Boom Minimization Research
,”
AIAA
Paper No. 2011-1280.10.2514/6.2011-1280
3.
Iwamiya
,
T.
,
2002
, “
A Computational Study on Unmanned Scaled Supersonic Experimental Airplane
,”
AIAA
Paper No. 2002-2841.10.2514/6.2002-2841
4.
Mizobata
,
K.
,
Minato
,
R.
,
Tanatsugu
,
N.
,
Kimura
,
H.
,
Himeno
,
T.
,
Kobayashi
,
H.
,
Kojima
,
T.
, and
Arai
,
T.
,
2005
, “
Development Study on a Small-Scale Supersonic Flight Experiment Vehicle With Air-Breathing Propulsion
,”
AIAA
Paper No. 2005-3347.10.2514/6.2005-3347
5.
Yoshida
,
K.
,
Yoshikazu
,
M.
, and
Shimbo
,
Y.
,
2002
, “
An Experimental Study on Unmanned Scaled Supersonic Experimental Airplane
,”
AIAA
Paper No. 2002-2842.10.2514/6.2002-2842
6.
Ohnuki
,
T.
,
Hirako
,
K.
, and
Sakata
,
K.
,
2006
, “
National Experimental Supersonic Transport Project
,”
25th International Congress of the Aeronautical Sciences
, Hamburg, Germany, September 2006, Paper No. 760.
7.
Walter
,
S.
, and
Starkey
,
R.
,
2012
, “
GOJETT: A Supersonic Unmanned Aerial Flight System
,”
AIAA
Paper No. 2012-0022.10.2514/6.2012-22
8.
Yamakazi
,
Y.
,
Mizobata
,
K.
, and
Higashino
,
K.
,
2019
, “
Drag Reduction on the Basis of the Area Rule of the Small-Scale Supersonic Flight Experiment Vehicle Being Developed at Muroran Institute of Technology
,”
Trans. Jpn. Soc. Aeronaut. Space Sci., Aerosp. Technol. Jpn.
,
17
(
2
), pp.
127
133
.10.2322/tastj.17.127
9.
Mizobata
,
K.
,
Minato
,
R.
,
Higuchi
,
K.
,
Ueba
,
M.
,
Takagi
,
S.
,
Nakata
,
D.
,
Higashino
,
K.
, and
Tanatsugu
,
N.
,
2014
, “
Development of a Small-Scale Supersonic Flight Experiment Vehicle as a Flying Test Bed for Future Space Transportation Research
,”
Trans. Jpn. Soc. Aeronaut. Space Sci., Aerosp. Technol. Jpn.
,
12
(
ISTS29
), pp.
Po_3_1
Po_3_10
.10.2322/tastj.12.Po_3_1
10.
OpenFOAM Foundation
,
2019
, “
OpenFOAM Foundation Repository for OpenFOAM Version 6
,”
11.
Palacios
,
F.
,
Economon
,
T. D.
,
Aranake
,
A.
,
Copeland
,
S. R.
,
Lonkar
,
A. K.
,
Lukaczyk
,
T. W.
,
Manosalvas
,
D. E.
,
Naik
,
K. R.
,
Padron
,
S.
,
Tracey
,
B.
,
Variyar
,
A.
, and
Alonso
,
J. J.
,
2014
, “
Stanford University Unstructured (SU2): Analysis and Design Technology for Turbulent Flows
,”
AIAA
Paper No. 2014-0243.10.2514/6.2014-0243
12.
Stoldt
,
H.
,
2021
, “
Verification and Validation of a High-Fidelity Open-Source Simulation Tool for Supersonic Aircraft Aerodynamic Analysis
,” Master's thesis,
University of Calgary
, Calgary, Canada.
13.
Jasak
,
H.
,
1996
, “
Error Analysis and Estimation for the Finite Volume Method With Applications to Fluid Flows
,” Ph.D. thesis,
Imperial College London
, London, UK.
14.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
15.
Bondarev
,
A. E.
, and
Kuvshinnikov
,
A. E.
,
2018
, “
Analysis of the Accuracy of Openfoam Solvers for the Problem of Supersonic Flow Around a Cone
,”
International Conference on Computational Science
, Wuxi, China, June 2018, pp.
221
230
.
16.
Kurganov
,
A.
,
Noelle
,
S.
, and
Petrova
,
G.
,
2001
, “
Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations
,”
SIAM J. Sci. Comput.
,
23
(
3
), pp.
707
740
.10.1137/S1064827500373413
17.
Hamzehloo
,
A.
, and
Aleiferis
,
P. G.
,
2019
, “
LES and RANS Modelling of Under-Expanded Jets With Application to Gaseous Fuel Direct Injection for Advanced Propulsion Systems
,”
Int. J. Heat Fluid Flow
,
76
(
1
), pp.
309
334
.10.1016/j.ijheatfluidflow.2019.01.017
18.
Lee
,
Y.
,
Yao
,
W.
, and
Fan
,
X.
,
2018
, “
Low-Dissipative Hybrid Compressible Solver Designed for Large-Eddy Simulation of Supersonic Turbulent Flows
,”
AIAA J.
,
56
(
8
), pp.
3086
3096
.10.2514/1.J056404
19.
Cao
,
C.
,
Ye
,
T.
, and
Zhao
,
M.
,
2015
, “
Large Eddy Simulation of Hydrogen/Air Scramjet Combustion Using Tabulated Thermo-Chemistry Approach
,”
Chin. J. Aeronaut.
,
28
(
5
), pp.
1316
1327
.10.1016/j.cja.2015.08.008
20.
Yachao
,
L.
,
Yao
,
W.
, and
Fan
,
X.
,
2017
, “
A Low-Dissipation Scheme Based on OpenFOAM Designed for Large Eddy Simulation in Compressible Flow
,”
AIAA
Paper No. 2017-2444.10.2514/6.2017-2444
21.
Teh
,
E. J.
, and
Johansen
,
C. T.
,
2016
, “
Effect of Particle Momentum Transfer on an Oblique-Shock-Wave/Laminar-Boundary-Layer Interaction
,”
Acta Astronaut.
,
128
(
1
), pp.
431
439
.10.1016/j.actaastro.2016.08.004
22.
Bansal
,
A.
,
Feldick
,
A.
, and
Modest
,
M.
,
2012
, “
Simulation of Hypersonic Flow and Radiation Over a Mars Reentry Vehicle Using OpenFOAM
,”
AIAA
Paper No. 2012-0650.10.2514/6.2012-650
23.
Greenshields
,
C. J.
, and
Reese
,
J. M.
,
2012
, “
Rarefied Hypersonic Flow Simulations Using the Navier-Stokes Equations With Non-Equilibrium Boundary Conditions
,”
Prog. Aerosp. Sci.
,
52
(
1
), pp.
80
87
.10.1016/j.paerosci.2011.08.001
24.
Le
,
N. T. P.
,
White
,
C.
,
Reese
,
J. M.
, and
Myong
,
R. S.
,
2012
, “
Langmuir-Maxwell and Langmuir-Smoluchowski Boundary Conditions for Thermal Gas Flow Simulations in Hypersonic Aerodynamics
,”
Int. J. Heat Mass Transfer
,
55
(
19–20
), pp.
5032
5043
.10.1016/j.ijheatmasstransfer.2012.04.050
25.
Darbandi
,
M.
, and
Roohi
,
E.
,
2013
, “
A Hybrid DSMC/Navier-Stokes Frame to Solve Mixed Rarefied/Nonrarefied Hypersonic Flows Over Nano-Plate and Micro-Cylinder
,”
J. Numer. Methods Fluids
,
72
(
9
), pp.
937
966
.10.1002/fld.3769
26.
Gijare
,
H.
,
Assam
,
A.
, and
Dongari
,
N.
,
2015
, “
Aero-Thermodynamics Optimization of Re-Entry Capsule in the Slip Flow Regime
,”
23rd National Heat and Mass Transfer Conference
, Thiruvananthapuram, India, December 2015, Paper No. IHMTC2015-487.
27.
Palacios
,
F.
,
Colonno
,
M. R.
,
Aranake
,
A. C.
,
Campos
,
A.
,
Copeland
,
S. R.
,
Economon
,
T. D.
,
Lonkar
,
A. K.
,
Lukaczyk
,
T. W.
,
Taylor
,
T. W.
, and
Alonso
,
J. J.
,
2013
, “
Stanford University Unstructured (SU2): an Open-Source Integrated Computational Environment for Multi-Physics Simulation and Design
,”
AIAA
Paper No. 2013-0287.10.2514/6.2013-287
28.
Albring
,
T. A.
,
Sagebaum
,
M.
, and
Gauger
,
N. R.
,
2016
, “
Efficient Aerodynamic Design Using the Discrete Adjoint Method in SU2
,”
AIAA
Paper No. 2016-3518.10.2514/6.2016-3518
29.
Vitale
,
S.
,
Pini
,
M.
, and
Colonna
,
P.
,
2020
, “
Multistage Turbomachinery Design Using the Discrete Adjoint Method Within the Open-Source Software SU2
,”
J. Propul. Power
,
36
(
3
), pp.
465
478
.10.2514/1.B37685
30.
Pini
,
M.
,
Vitale
,
S.
,
Colonna di Paliano
,
P.
,
Gori
,
G.
,
Guardone
,
A.
,
Economon
,
T.
,
Alonso
,
J.
, and
Palacios
,
F.
,
2017
, “
SU2: The Open-Source Software for Non-Ideal Compressible Flows
,”
J. Phys.: Conf. Ser.
,
821
(
1
), p.
012013
.10.1088/1742-6596/821/1/012013
31.
Mishra
,
A. A.
,
Mukhopadhaya
,
J.
,
Iaccarino
,
G.
, and
Alonso
,
J.
,
2019
, “
Uncertainty Estimation Module for Turbulence Model Predictions in SU2
,”
AIAA J.
,
57
(
3
), pp.
1066
1077
.10.2514/1.J057187
32.
Xiao
,
H.
, and
Cinnella
,
P.
,
2019
, “
Quantification of Model Uncertainty in RANS Simulations: A Review
,”
Prog. Aerosp. Sci.
,
108
(
1
), pp.
1
31
.10.1016/j.paerosci.2018.10.001
33.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
, Cambridge, UK.
34.
Sod
,
G. A.
,
1978
, “
A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws
,”
J. Comput. Phys.
,
27
(
1
), pp.
1
31
.10.1016/0021-9991(78)90023-2
35.
Greenshields
,
C. J.
,
Weller
,
H. G.
,
Gasparini
,
L.
, and
Reese
,
J. M.
,
2010
, “
Implementation of Semi-Discrete, Non-Staggered Central Schemes in a Colocated, Polyhedral, Finite Volume Framework, for High-Speed Viscous Flows
,”
Int. J. Numer. Methods Fluids
,
63
(
1
), pp.
1
21
.10.1002/fld.2069
36.
Miller
,
W.
,
Medwell
,
P.
,
Kim
,
M. K.
, and
Doolan
,
C. J.
,
2016
, “
Computational Methodology for Investigating the Transient Interaction Between a Reaction Control Jet and a Hypersonic Crossflow
,”
AIAA
Paper No. 2016-0343.10.2514/6.2016-0343
37.
Rumsey
,
C.
, “
2D Zero Pressure Gradient Flat Plate Validation Case
,” accessed Aug. 28, 2020, https://turbmodels.larc.nasa.gov/ZPGflatplateSS_val.html
38.
Yu
,
H.
, and
Thé
,
J.
,
2016
, “
Validation and Optimization of SST k-ω Turbulence Model for Pollutant Dispersion Within a Building Array
,”
Atmos. Environ.
,
145
(
1
), pp.
225
238
.10.1016/j.atmosenv.2016.09.043
39.
Robertson
,
E.
,
Choudhury
,
V.
,
Bhushan
,
S.
, and
Walters
,
D. K.
,
2015
, “
Validation of OpenFOAM Numerical Methods and Turbulence Models for Incompressible Bluff Body Flows
,”
Comput. Fluids
,
123
(
1
), pp.
122
145
.10.1016/j.compfluid.2015.09.010
40.
SU2 Foundation
,
2018
, “
2D Zero Pressure Gradient Flat Plate RANS Verification Case
,”
41.
Miller
,
D.
, and
Wood
,
R.
,
1985
, “
Lee-Side Flow Over Delta Wings at Supersonic Speeds
,” NASA, Hampton, VA, Tech. Report No. TP-2430.
42.
ASME
,
2009
, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer. No
,” ASME Standard No. V&V 20-2009.
43.
Xing
,
T.
, and
Stern
,
F.
,
2010
, “
Factors of Safety for Richardson Extrapolation
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061403
.10.1115/1.4001771
44.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
45.
Economon
,
T. D.
,
Palacios
,
F.
,
Copeland
,
S. R.
,
Lukaczyk
,
T. W.
, and
Alonso
,
J. J.
,
2016
, “
SU2: An Open-Source Suite for Multiphysics Simulation and Design
,”
AIAA J.
,
54
(
3
), pp.
828
846
.10.2514/1.J053813
46.
Anderson
,
J. D.
, Jr.
2003
,
Modern Compressible Flow
, 3rd ed.,
McGraw-Hill
, New York.
47.
Godunov
,
S. K.
,
1959
, “
Finite Difference Method for Numerical Computation of Discontinuous Solutions of the Equations of Fluid Dynamics (in Russian)
,”
Matematicheskii Sb.
,
47
(89) (3), pp.
271
309
.https://hal.archives-ouvertes.fr/hal-01620642
48.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
49.
Rumsey
,
C.
, and
Thomas
,
J.
,
2008
, “
Application of FUN3D and CFL3D to the Third Workshop on CFD Uncertainty Analysis
,” NASA, Hampton, VA, Report No. TM-2008-215537.
50.
Towne
,
C. E.
,
2009
, “
Wind-US User's Guide, Version 2.0
,” NASA, Cleveland, OH, Report No. TM-2009-215804.
51.
Rumsey, C., “
SST-Vm Expected Results - 2D Zero Pressure Gradient Flat Plate
,” accessed Aug. 28, 2020, https://turbmodels.larc.nasa.gov/flatplate_sst.html
52.
Blottner
,
F.
,
1982
, “
Influence of Boundary Approximations and Conditions on Finite Difference Solutions
,”
J. Comput. Phys.
,
48
(
2
), pp.
246
269
.10.1016/0021-9991(82)90049-3
53.
Steinbrenner
,
J. P.
, “
Construction of Prism and Hex Layers From Anisotropic Tetrahedra
,”
AIAA
Paper No. 2015-2296.10.2514/6.2015-2296
54.
Jackson
,
C.
,
Corlett
,
W.
, and
Monta
,
W.
,
1981
, “
Description and Calibration of the Langley Unitary Plan Wind Tunnel
,”
Langley Research Center
,
Hampton, VA
, Report No. TP-1905.
55.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
56.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
57.
Xu
,
F.
,
Moutsanidis
,
G.
,
Kamensky
,
D.
,
Hsu
,
M. C.
,
Murugan
,
M.
,
Ghoshal
,
A.
, and
Bazilevs
,
Y.
,
2017
, “
Compressible Flows on Moving Domains: Stabilized Methods, Weakly Enforced Essential Boundary Conditions, Sliding Interfaces, and Application to Gas-Turbine Modeling
,”
Comput. Fluids
,
158
(
1
), pp.
201
220
.10.1016/j.compfluid.2017.02.006
58.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1–3
), pp.
199
259
.10.1016/0045-7825(82)90071-8
59.
University of Calgary Research Computing Services
,
2020
,
ARC Cluster Guide, Calgary, Canada
.
60.
Economon
,
T. D.
,
Mudigere
,
D.
,
Bansal
,
G.
,
Heinecke
,
A.
,
Palacios
,
F.
,
Park
,
J.
,
Smelyanskiy
,
M.
,
Alonso
,
J. J.
, and
Dubey
,
P.
,
2016
, “
Performance Optimizations for Scalable Implicit RANS Calculations With SU2
,”
Comput. Fluids
,
129
(
1
), pp.
146
158
.10.1016/j.compfluid.2016.02.003
61.
MacDonald
,
T.
,
Clarke
,
M.
,
Botero
,
E. M.
,
Vegh
,
J. M.
, and
Alonso
,
J. J.
, “
SUAVE: An Open-Source Environment Enabling Multi-Fidelity Vehicle Optimization
,”
AIAA
Paper No. 2017-443710.2514/6.2017-4437
You do not currently have access to this content.