Abstract

The evaluation of effective material properties in heterogeneous materials (e.g., composites or multicomponent structures) is critically relevant to a wide spectrum of applications, including nuclear power, electronic packaging, flame retardants, hypersonics, and gas turbine power. The work described in this paper is centered around the numerical assessment of the thermal behavior of porous materials obtained from finite element thermal modeling and simulation. Two-dimensional, steady-state analyses were performed on unit cells with centered, circular pores using a second-order accurate Galerkin finite element method (FEM). The effective thermal conductivities of the porous systems were examined, encompassing a range of porosities from 4.9% to 60.1%. The geometries of the models were generated based on ordered circular pores for each modeled porosity level. The system response quantity (SRQ) under investigation was the dimensionless effective thermal conductivity across the unit cell. The dimensionless effective thermal conductivity was compared across all simulated cases, producing a trend between porosity and effective thermal conductivity. In the presented investigation, the method of manufactured solutions (MMS) was used to perform code verification, and the grid convergence index (GCI) was employed to estimate discretization uncertainty as solution verification. Code verification concluded an approximately second order accurate Galerkin FEM solver. It was found that the introduction of porosity to the unit cell material structure reduces effective thermal conductivity, as anticipated. Numerical results obtained in this study are compared to an analytical solution and to a sample of empirical data. This approach can be readily generalized to study a wide variety of porous solids from ranging from structures at the nanoscale—such as nanocarbon tubes—to structures at macrolevel scales—such as geological features.

References

1.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
Springer
,
New York
.
2.
Bergman
,
T. L.
,
Incropera
,
F. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
3.
Zhang
,
H.-F.
,
Ge
,
X.-S.
, and
Ye
,
H.
,
2006
, “
Effective Thermal Conductivity of Two-Scale Porous Media
,”
Appl. Phys. Lett.
,
89
(
8
), p.
081908
.10.1063/1.2337274
4.
Sayari
,
A.
, and
Jaroniec
,
M.
, Eds.,
2005
,
Nanoporous Materials IV
,
Elsevier Science
,
Amsterdam, The Netherlands
.
5.
Nield
,
D. A.
, and
Bejan
,
A.
,
2006
, “
Convection With Change of Phase
,” Convection in Porous Media, Springer, New York, pp.
305
344
.
6.
Berryman
,
J. G.
,
2005
, “
Thermal Conductivity of Porous Media
,”
Appl. Phys. Lett.
,
86
(
3
), p.
032905
.10.1063/1.1852718
7.
Singh
,
K. J.
,
Singh
,
R.
, and
Chaudhary
,
D. R.
,
1998
, “
Heat Conduction and a Porosity Correction Term for Spherical and Cubic Particles in a Simple Cubic Packing
,”
J. Phys. D Appl. Phys.
,
31
(
14
), pp.
1681
1687
.10.1088/0022-3727/31/14/011
8.
Thovert
,
J. F.
,
Wary
,
F.
, and
Adler
,
P. M.
,
1990
, “
Thermal Conductivity of Random Media and Regular Fractals
,”
J. Appl. Phys.
,
68
(
8
), pp.
3872
3883
.10.1063/1.346274
9.
Kashiwagi
,
T.
,
Grulke
,
E.
,
Hilding
,
J.
,
Groth
,
K.
,
Harris
,
R.
,
Butler
,
K.
,
Shields
,
J.
,
Kharchenko
,
S.
, and
Douglas
,
J.
,
2004
, “
Thermal and Flammability Properties of Polypropylene/Carbon Nanotube Nanocomposites
,”
Polymer
,
45
(
12
), pp.
4227
4239
.10.1016/j.polymer.2004.03.088
10.
Liu
,
S.
,
Yan
,
H.
,
Fang
,
Z.
, and
Wang
,
H.
,
2014
, “
Effect of Graphene Nanosheets on Morphology, Thermal Stability, and Flame Retardancy of Epoxy Resin
,”
Compos. Sci. Technol.
,
90
, pp.
40
47
.10.1016/j.compscitech.2013.10.012
11.
Yang
,
S.-Y.
,
Lin
,
W.-N.
,
Huang
,
Y.-L.
,
Tien
,
H.-W.
,
Wang
,
J.-Y.
,
Ma
,
C.-C. M.
,
Li
,
S.-M.
, and
Wang
,
Y.-S.
,
2011
, “
Synergetic Effects of Graphene Platelets and Carbon Nanotubes on the Mechanical and Thermal Properties of Epoxy Composites
,”
Carbon
,
49
(
3
), pp.
793
803
.10.1016/j.carbon.2010.10.014
12.
Ramanathan
,
T.
,
Abdala
,
A. A.
,
Stankovich
,
S.
,
Dikin
,
D. A.
,
Herrera-Alonso
,
M.
,
Piner
,
R. D.
,
Adamson
,
D. H.
,
Schniepp
,
H. C.
,
Chen
,
X.
,
Ruoff
,
R. S.
,
Nguyen
,
S. T.
,
Aksay
,
I. A.
,
Prud'Homme
,
R. K.
, and
Brinson
,
L. C.
,
2008
, “
Functionalized Graphene Sheets for Polymer Nanocomposites
,”
Nat. Nanotechnol.
,
3
(
6
), pp.
327
331
.10.1038/nnano.2008.96
13.
Wu
,
Q.
,
Zhu
,
W.
,
Zhang
,
C.
,
Liang
,
Z.
, and
Wang
,
B.
,
2010
, “
Study of Fire Retardant Behavior of Carbon Nanotube Membranes and Carbon Nanofiber Paper in Carbon Fiber Reinforced Epoxy Composites
,”
Carbon
,
48
(
6
), pp.
1799
1806
.10.1016/j.carbon.2010.01.023
14.
Knight
,
C. C.
,
Ip
,
F.
,
Zeng
,
C.
,
Zhang
,
C.
, and
Wang
,
B.
,
2013
, “
A Highly Efficient Fire-Retardant Nanomaterial Based on Carbon Nanotubes and Magnesium Hydroxide
,”
Fire Mater.
,
37
(
2
), pp.
91
99
.10.1002/fam.2115
15.
Ibrahim
,
T. K.
, and
Rahman
,
M. M.
,
2013
, “
Study on Effective Parameter of the Triple-Pressure Reheat Combined Cycle Performance
,”
Therm. Sci.
,
17
(
2
), pp.
497
508
.10.2298/TSCI111016143I
16.
Fathi
,
N.
,
McDaniel
,
P.
,
Forsberg
,
C.
, and
de Oliveira
,
C.
,
2018
, “
Power Cycle Assessment of Nuclear Systems, Providing Energy Storage for Low Carbon Grids
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
4
(
2
), p.
020911
.10.1115/1.4037806
17.
Fathi
,
N.
,
McDaniel
,
P.
,
Forsberg
,
C.
, and
de Oliveira
,
C.
,
2016
, “
Nuclear Systems for a Low Carbon Electrical Grid
,”
ASME
Paper No. ICONE24-60128. 10.1115/ICONE24-60128
18.
Rechard
,
R. P.
,
Hadgu
,
T.
,
Wang
,
Y.
,
Sanchez
,
L. C.
,
McDaniel
,
P.
,
Skinner
,
C.
, and
Fathi
,
N.
,
2017
, “
Technical Feasibility of Direct Disposal of Electrorefiner Salt Waste
,” Sandia National Laboratories (SNL-NM), Albuquerque, NM, Standard No. SAND2017-10554.
19.
Rechard
,
R. P.
,
Hadgu
,
T.
,
Wang
,
Y.
,
Sanchez
,
L. C.
,
McDaniel
,
P.
,
Skinner
,
C.
,
Fathi
,
N.
,
Frank
,
S.
, and
Patterson
,
M.
,
2017
, “
Feasibility of Direct Disposal of Salt Waste From Electochemical Processing of Spent Nuclear Fuel
,” arXiv preprint arXiv:1710.00855.
20.
Zohuri
,
B.
, and
Fathi
,
N.
,
2015
,
Thermal-Hydraulic Analysis of Nuclear Reactors
,
Springer
,
New York
.
21.
Zohuri
,
B.
, and
Fathi
,
N.
,
2015
, “
Nuclear Fuel Cycle
,”
Thermal-Hydraulic Analysis of Nuclear Reactors
,
Springer
,
Cham
, pp.
525
542
.
22.
Landauer
,
R.
,
1952
, “
The Electrical Resistance of Binary Metallic Mixtures
,”
J. Appl. Phys.
,
23
(
7
), pp.
779
784
.10.1063/1.1702301
23.
Smith
,
D. S.
,
Alzina
,
A.
,
Bourret
,
J.
,
Nait-Ali
,
B.
,
Pennec
,
F.
,
Tessier-Doyen
,
N.
,
Otsu
,
K.
,
Matsubara
,
H.
,
Elser
,
P.
, and
Gonzenbach
,
U. T.
,
2013
, “
Thermal Conductivity of Porous Materials
,”
J. Mater. Res.
,
28
(
17
), pp.
2260
2272
.10.1557/jmr.2013.179
24.
Chatterjee
,
A.
,
Verma
,
R.
,
Umashankar
,
H. P.
,
Kasthurirengan
,
S.
,
Shivaprakash
,
N. C.
, and
Behera
,
U.
,
2019
, “
Heat Conduction Model Based on Percolation Theory for Thermal Conductivity of Composites With High Volume Fraction of Filler in Base Matrix
,”
Int. J. Therm. Sci.
,
136
, pp.
389
395
.10.1016/j.ijthermalsci.2018.09.015
25.
Devpura, A., Phelan, P. E., and Prasher, R. S., 2000, “Percolation Theory Applied to the Analysis of Thermal Interface Materials in Flip-Chip Technology,” The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITHERM
), Las Vegas, NV, May 23–26, pp. 21–28.10.1109/ITHERM.2000.866803
26.
Krischer
,
O.
, and
Kroell
,
K.
,
1956
, “
Die Wissenschaftlichen Grundlagen Der Trocknungstechnik
,”
Trocknungstechnik
,
1
, p.
48
.
27.
Yagi
,
S.
, and
Kunii
,
D.
,
1957
, “
Studies on Effective Thermal Conductivities in Packed Beds
,”
Am. Inst. Chem. Eng. J.
,
3
(
3
).
28.
Nan
,
C. W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
,
1997
, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
,
81
(
10
), pp.
6692
6699
.10.1063/1.365209
29.
Every
,
A. G.
,
Tzou
,
Y.
,
Hasselman
,
D. P. H.
, and
Raj
,
R.
,
1992
, “
The Effect of Particle Size on the Thermal Conductivity of ZnS/Diamond Composites
,”
Acta Metall. et Mater.
,
40
(
1
), pp.
123
129
.10.1016/0956-7151(92)90205-S
30.
Torquato
,
S.
, and
Rintoul
,
M. D.
,
1995
, “
Effect of Interface on the Properties of Composite Media
,”
Phys. Rev. Lett.
,
75
(
22
), pp.
4067
4070
.10.1103/PhysRevLett.75.4067
31.
Woodside
,
W.
, and
Messmer
,
J. H.
,
1961
, “
Thermal Conductivity of Porous Media
,”
J. Appl. Phys.
,
32
(
9
), pp.
1688
1706
.10.1063/1.1728419
32.
Krupiczka
,
R.
,
1967
, “
Analysis of Thermal Conductivity in Granular Materials
,”
Int. Chem. Eng.
,
7
, pp.
122
144
.
33.
Oden
,
J. T.
,
Belytschko
,
T.
,
Fish
,
J.
,
Hughes
,
T. J.
,
Johnson
,
C.
,
Keyes
,
D.
,
Laub
,
A.
,
Petzold
,
L.
,
Srolovitz
,
D.
, and
Yip
,
S.
,
2006
, “
Revolutionizing Engineering Science Through Simulation
,” National Science Foundation, Alexandria, VA.
34.
Kwaśniewski
,
L.
,
2013
, “
Application of Grid Convergence Index in FE Computation
,”
Bull. Pol. Acad. Sci. Tech. Sci.
,
61
(
1
), pp.
123
128
.10.2478/bpasts-2013-0010
35.
Wang
,
M.
,
Wang
,
J.
,
Pan
,
N.
,
Chen
,
S.
, and
He
,
J.
,
2007
, “
Three-Dimensional Effect on the Effective Thermal Conductivity of Porous Media
,”
J. Phys. D Appl. Phys.
,
40
(
1
), pp.
260
265
.10.1088/0022-3727/40/1/024
36.
Bakker
,
K.
,
1997
, “
Using the Finite Element Method to Compute the Influence of Complex Porosity and Inclusion Structures on the Thermal and Electrical Conductivity
,”
Int. J. Heat Mass Transfer
,
40
(
15
), pp.
3503
3511
.10.1016/S0017-9310(97)00017-3
37.
Fiedler
,
T.
,
Löffler
,
R.
,
Bernthaler
,
T.
,
Winkler
,
R.
,
Belova
,
I. V.
,
Murch
,
G. E.
, and
Öchsner
,
A.
,
2009
, “
Numerical Analyses of the Thermal Conductivity of Random Hollow Sphere Structures
,”
Mater. Lett.
,
63
(
13–14
), pp.
1125
1127
.10.1016/j.matlet.2008.10.030
38.
Kou
,
J.
,
Wu
,
F.
,
Lu
,
H.
,
Xu
,
Y.
, and
Song
,
F.
,
2009
, “
The Effective Thermal Conductivity of Porous Media Based on Statistical Self-Similarity
,”
Phys. Lett. A
,
374
(
1
), pp.
62
65
.10.1016/j.physleta.2009.10.015
39.
Wang
,
J.
,
Carson
,
J. K.
,
North
,
M. F.
, and
Cleland
,
D. J.
,
2006
, “
A New Approach to Modelling the Effective Thermal Conductivity of Heterogeneous Materials
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3075
3083
.10.1016/j.ijheatmasstransfer.2006.02.007
40.
Wang
,
M.
,
Wang
,
J.
,
Pan
,
N.
, and
Chen
,
S.
,
2007
, “
Mesoscopic Predictions of the Effective Thermal Conductivity for Microscale Random Porous Media
,”
Phys. Rev. E
,
75
(
3
), p.
036702
.10.1103/PhysRevE.75.036702
41.
Rocha
,
R. P. A.
, and
Cruz
,
M. A. E.
,
2001
, “
Computation of the Effective Conductivity of Unidirectional Fibrous Composites With an Interfacial Thermal Resistance
,”
Numer. Heat Transfer: Part A Appl.
,
39
(
2
), pp.
179
203
.10.1080/104077801300004267
42.
Alaie
,
S.
,
Goettler
,
D. F.
,
Su
,
M.
,
Leseman
,
Z. C.
,
Reinke
,
C. M.
, and
El-Kady
,
I.
,
2015
, “
Thermal Transport in Phononic Crystals and the Observation of Coherent Phonon Scattering at Room Temperature
,”
Nat. Commun.
,
6
(
1
), pp.
1
8
.10.1038/ncomms8228
43.
Irick
,
K.
, and
Fathi
,
N.
,
2020
, “
Evaluation of Pore Geometry Effects on Porous Cell Thermal Behavior
,”
ASME
Paper No. VVS2020-8835.10.1115/VVS2020-8835
44.
Irick
,
K.
, and
Fathi
,
N.
,
2020
, “
High-Fidelity Calculation of Effective Thermal Response of Composite Media With Heat Generation Source
,”
ASME
Paper No. VVS2020-8836.10.1115/VVS2020-8836
45.
Irick
,
K.
, and
Fathi
,
N.
,
2019
, “
Computational Evaluation of Thermal Barrier Coatings: Two-Phase Thermal Transport Analysis
,”
ASME
Paper No. VVS2019-5134.10.1115/VVS2019-5134
46.
Irick
,
K.
, and
Fathi
,
N.
,
2018
, “
Thermal Response of Open-Cell Porous Materials: A Numerical Study and Model Assessment
,”
ASME
Paper No. VVS2018-9317.10.1115/VVS2018-9317
47.
Uppu
,
S. K.
,
Fathi
,
N.
,
Shen
,
Y.-L.
,
Newell
,
P.
,
Vorobieff
,
P.
, and
Aleyasin
,
S. S. T.
, “
Modeling and Simulation (M&S) Assessment of Mechanical Response of Open-Cell Porous Media
,” accessed Dec. 30, 2020, https://www.osti.gov/servlets/purl/1504203
48.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2002
,
Concepts and Applications of Finite Element Analysis
, 4th ed.,
Wiley
,
Hoboken, NJ
.
49.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
London
.
50.
Roache
,
P. J.
,
2009
,
Fundamentals of Verification and Validation
,
Hermosa Publishers
,
Socorro, NM
.
51.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
52.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
, 130(7), p.
078001
.10.1115/1.2960953
53.
Phillips
,
T. S.
, and
Roy
,
C. J.
,
2016
, “
A New Extrapolation-Based Uncertainty Estimator for Computational Fluid Dynamics
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
1
(
4
), p.
041006
.10.1115/1.4035666
54.
Chartrand
,
C.
, and
Fathi
,
N.
,
2018
, “
Verification and Validation of a Numerical Wave Tank Using Waves2FOAM
,” arXiv preprint arXiv:1807.08507.
55.
Edrisi
,
S.
,
Bidhendi
,
N. K.
, and
Haghighi
,
M.
,
2017
, “
A New Approach to Modeling the Effective Thermal Conductivity of Ceramics Porous Media Using a Generalized Self-Consistent Method
,”
Heat Mass Transfer
,
53
(
1
), pp.
321
330
.10.1007/s00231-016-1821-6
You do not currently have access to this content.