Abstract

Nuclear science and engineering is a field increasingly dominated by computational studies resulting from increasingly powerful computational tools. As a result, analytical studies, which previously pioneered nuclear engineering, are increasingly viewed as secondary or unnecessary. However, analytical solutions to reduced-fidelity models can provide important information concerning the underlying physics of a problem and aid in guiding computational studies. Similarly, there is increased interest in sensitivity analysis studies. These studies commonly use computational tools. However, providing a complementary sensitivity study of relevant analytical models can lead to a deeper analysis of a problem. This work provides the analytical sensitivity analysis of the one-dimensional (1D) cylindrical mono-energetic neutron diffusion equation using the forward sensitivity analysis procedure (FSAP) developed by Cacuci. Further, these results are applied to a reduced-fidelity model of a spent nuclear fuel cask, demonstrating how computational analysis might be improved with a complementary analytic sensitivity analysis.

References

1.
Fermi
,
E.
,
1946
, “
Neutron Physics
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LAMS-547.
2.
Goodman
,
C. D.
,
1947
,
The Science and Engineering of Nuclear Power
, Vol.
2
,
Addison-Wesley Press
,
Cambridge, MA
.
3.
Weinberg
,
A. M.
, and
Wigner
,
E. P.
,
1958
,
The Physical Theory of Neutron Chain Reactors
,
Chicago University Press
,
Chicago, IL
.
4.
Case
,
K. M.
, and
Zweifel
,
P. F.
,
1967
,
Linear Transport Theory
,
Addison-Wesley
,
Reading, MA
.
5.
Zwillinger
,
D.
,
1998
,
Handbook of Differential Equations
, Vol.
1
,
Academic Press
,
San Diego, CA
.
6.
Oberkampf
,
W. L.
,
Trucano
,
T. G.
, and
Hirsch
,
C.
,
2004
, “
Verification, Validation, and Predictive Capability in Computational Engineering and Physics
,”
ASME Appl. Mech. Rev.
,
57
(
5
), pp.
345
384
.10.1115/1.1767847
7.
Roache
,
P. J.
,
2009
,
Fundamentals of Verification and Validation
,
Hermosa Publishers
,
Albuquerque, NM
.
8.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, MA
.
9.
Ganapol
,
B.
,
2008
,
Analytical Benchmarks for Nuclear Engineering Applications: Case Studies in Neutron Transport Theory
, OECD NEA, Issy-les-Moulineaux, France.
10.
Myers
,
W. L.
,
1990
, “
Derivation of Similarith Solutions for the One-Dimensional, One-Velocity Neutron Diffusion Equation Using Lie Group Transformation Theory
,” Ph.D. thesis,
University of Illinois
,
Champaign, IL
.
11.
Sood
,
A.
,
Forster
,
R. A.
, and
Parsons
,
D. K.
,
2003
, “
Analytical Benchmark Test Set for Criticality Code Verification
,”
Prog. Nucl. Energy
,
42
(
1
), pp.
55
106
.10.1016/S0149-1970(02)00098-7
12.
Tsyfra
,
I.
, and
Czyżycki
,
T.
,
2014
, “
Symmetry and Solution of Neutron Transport Equations in Nonhomogeneous Media
,”
Abstr. Appl. Anal.
,
2014
, p.
724238
.10.1155/2014/724238
13.
Ramsey
,
S. D.
,
Tellez
,
J. A.
,
Riewski
,
E. J.
, and
Temple
,
B. A.
,
2018
, “
Symmetry and Separability of the Neutron Diffusion Equation
,”
J. Phys. Commun.
,
2
(
10
), p.
105009
.10.1088/2399-6528/aae2a4
14.
Giron
,
J. F.
,
Ramsey
,
S. D.
, and
Temple
,
B. A.
,
2019
, “
Conditions for Translation and Scaling Invariance of the Neutron Diffusion Equation
,”
Prog. Nucl. Energy
,
110
, pp.
333
340
.10.1016/j.pnucene.2018.10.005
15.
Pittman
,
E. R.
,
Schmidt
,
E. M.
, and
Ramsey
,
S. D.
,
2020
, “
Symmetries of the p3 Approximation to the Boltzmann Neutron Transport Equation
,”
Ann. Nucl. Energy
,
144
, p.
107502
.10.1016/j.anucene.2020.107502
16.
Barenblatt
,
G. I.
,
1996
,
Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics
, Cambridge Texts in Applied Mathematics,
Cambridge University Press
,
Cambridge MA
.
17.
Zaitsev
,
V. F.
, and
Polyanin
,
A. D.
,
2002
,
Handbook of Exact Solutions for Ordinary Differential Equations
,
Chapman and Hall/CRC Press
,
New York
.
18.
Sachdev
,
P.
, and
Janna
,
W.
,
2001
, “
Self-Similarity and Beyond: Exact Solutions of Nonlinear Problems
,”
ASME Appl. Mech. Rev.
,
54
(
6
), pp.
B108
B109
.10.1115/1.1421123
19.
Saltelli
,
A.
,
Tarantola
,
S.
,
Campolongo
,
F.
, and
Ratto
,
M.
,
2004
,
Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models
, Vol.
1
,
John Wiley & Sons
,
Chichester, West Sussex, UK
.
20.
Keepin
,
G. R.
,
1965
,
Physics of Nuclear Kinetics
,
Addison-Wesley Pub. Co
.,
New York
.
21.
Henry
,
A. F.
, et al.,
1975
,
Nuclear-Reactor Analysis
, Vol.
4
,
MIT Press
,
Cambridge, MA
.
22.
Lewins
,
J.
,
1965
,
Importance: The Adjoint Function the Physical Basis of Variational and Perturbation Theory in Transport and Diffusion Problems
,
Pergamon Press
,
Oxford, NY
.
23.
Cacuci
,
D. G.
,
Ionescu-Bujor
,
M.
, and
Navon
,
I. M.
,
2005
,
Sensitivity and Uncertainty Analysis: Applications to Large-Scale Systems
, Vol.
2
,
CRC Press
,
New York
.
24.
Stacey
,
W. M.
,
1974
,
Variational Methods in Nuclear Reactor Physics
,
Academic Press
,
New York
.
25.
Greenspan
,
E.
,
1976
, “
Developments in Perturbation Theory
,”
Advances in Nuclear Science and Technology
, Vol.
9
,
Academic Press
,
New York
.
26.
Lewins
,
J.
, and
Becker
,
M.
,
1982
, “
Sensitivity and Uncertainty Analysis of Reactor Performance Parameters
,”
Advances in Nuclear Science and Technology
, Vol.
14
,
Plenum Press
,
New York
.
27.
Cacuci
,
D.
,
2003
,
Sensitivity and Uncertainty Analysis: Theory
, Vol.
1
,
Chapman & Hall/CRC
,
New York
.
28.
Harkness
,
I.
, et al.,
2018
, “
Feasibility of Fast Neutron Spectroscopy for Safegaurds and Verification of Spent Fuel in Dry Cask Storage
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-18-29519.
29.
Miller
,
C. A.
, Geddes, C. G. R., Ludewigt, B. A., Clarke, S. D., and Pozzi, S. A.,
2020
, “
Verification of Dry Storage Cask Loading Using Monoenergetic Photon Sources
,”
Ann. Nucl. Eng.
,
137
, p. 107091.10.1016/j.anucene.2019.107091
30.
Liao
,
C.
, and
Yang
,
H.
,
2014
, “
Design of a Cosmic-Ray Muon Tomography System for Dry Storage Cask Imaging
,” IEEE Nuclear Science Symposium and Medical Imaging Conference (
NSS/MIC
), Seattle, WA, Nov. 8–15, pp.
1
4
.10.1109/NSSMIC.2014.7431082
31.
Greulich
,
C.
,
Hughes
,
C.
,
Gao
,
Y.
,
Enqvist
,
A.
, and
Baciak
,
J.
,
2017
, “
High Energy Neutrons Transmission Analysis of Dry Cask Storage
,”
Nucl. Inst. Meth. Phys. Res. A
,
874
, pp.
5
11
.10.1016/j.nima.2017.08.014
32.
Sanders
,
T. L.
, and
Westfall
,
R. M.
,
1990
, “
Feasibility and Incentives for Burnup Credit in Spent-Fuel Transport Casks
,”
Nucl. Sci. Eng.
,
104
(
1
), pp.
66
77
.10.13182/NSE90-A23703
33.
Radulescu
,
G.
,
Muellerand
,
D. E.
, and
Wagner
,
J. C.
,
2009
, “
Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG/CR-6951.
34.
Brady
,
M. C.
, and
Sanders
,
T. L.
,
1991
, “
A Validated Methodology for Evaluating Burnup Credit in Spent Fuel Casks
,”
International Conference on Nuclear Critcality Safety
, Oxford, UK, Sept. 9–13, pp.
1
16
.
35.
Gao
,
Y.
,
Hughes
,
C. R.
,
Greulich
,
C. R.
,
Tulenko
,
J. E.
,
Enqvist
,
A.
,
Baciak
,
J. E.
, et al.,
2018
, “
Radiation Dose Rate Distributions of Spent Fuel Casks Estimated With Mavric Based on Detailed Geometry and Continuous-Energy
,”
Ann. Nucl. Energy
117
, pp.
84
97
.10.1016/j.anucene.2018.03.015
36.
Remedes
,
T. J.
,
Ramsey
,
S. D.
,
Schmidt
,
J. H.
, and
Baciak
,
J. E.
,
2020
, “
Radiation Transport Simulation Results Assessment Through Comparison With Reduced Complexity Analytic and Computational Models
,”
ASME
Paper No. VVS2020-8812.10.1115/VVS2020-8812
37.
Holtec
,
2017
, “Hi-Storm FSAR Report,” Holtec International, Marlton, NJ, Report No. 2002444.
38.
Bell
,
G. I.
, and
Galsstone
,
S.
,
1970
,
Nuclear Reactor Theory
,
Von Nostrand Reinhold Company
,
New York
.
39.
Duderstadt
,
J. J.
, and
Hamilton
,
L. J.
,
1876
,
Nuclear Reactor Analysis
,
Wiley
,
New York, NY
.
40.
Lewis
,
E. E.
, and
Miller
,
W. F.
,
1993
,
Computational Methods of Neutron Transport
,
American Nuclear Society
,
La Grange Park, Il
.
41.
Lamarsh
,
J. R.
, and
Baratta
,
A. J.
,
2001
,
Introduction to Nuclear Engineering
, Vol.
3
,
Prentice Hall, Upper Saddle River
,
NJ
.
42.
Saltelli
,
A.
,
Chan
,
K.
, and
Scott
,
E. M.
,
2000
,
Sensitivity Analysis
,
Wiley
,
New York
.
43.
Oblow
,
E. M.
,
Pin
,
F. G.
, and
Wright
,
R. Q.
,
1986
, “
Sensitivity Analysis Using Computer Calculus: A Nuclear Easte Isolation Application
,”
Nucl. Sci. Eng.
,
94
(
1
), pp.
46
65
.10.13182/NSE86-A17116
44.
Guo
,
Z.
, and
Uhrig
,
R. E.
,
1992
, “
Sensitivity Analysis and Applications to Nuclear Power Plant
,”
IEEE IJCNN International Joint Conference on Neural Networks
, Vol. 2, Baltimore, MD, June 7–11, pp.
453
458
.10.1109/IJCNN.1992.226946
45.
Qiu
,
Y.
,
Aufiero
,
M.
,
Wang
,
K.
, and
Fratoni
,
M.
,
2016
, “
Development of Sensitivity Analysis Capabilities of Generalized Responses to Nuclear Data in Monte Carlo Code RMC
,”
Ann. Nucl. Eng.
,
97
, pp.
142
152
.10.1016/j.anucene.2016.07.016
46.
MacFarlane
,
R.
, et al.,
2016
, “The NJOY Nuclear Data Processing System, Version 2016,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-17-20093.
47.
Werner
,
C.
, et al.,
2018
, “MCNP6.2 Release Notes,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-18-20808.
48.
Favorite
,
J.
,
2017
, “
Using the MCNP Taylor Series Perturbation Feature (Efficiently) for Shielding Problems
,”
EPJ Web of Conferences-ICRS-13 and RPSD-2016
, Vol.
153
, Paris, France, Oct. 3–6, pp.
786
793
.
49.
Trellue
,
H. R.
, et al.,
2011
, “
Description of Irradiated Fuel
UO2 Fuel Compositions Generated for NGSI Spent Fuel Libraries,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-11-00300.
50.
SCALE
,
2011
, “
Scale: Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL/TM-2005/39.
You do not currently have access to this content.