Abstract

Bison is a computational physics code that uses the finite element method to model the thermo-mechanical response of nuclear fuel. Since Bison is used to inform high-consequence decisions, it is important that its computational results are reliable and predictive. One important step in assessing the reliability and predictive capabilities of a simulation tool is the verification process, which quantifies numerical errors in a discrete solution relative to the exact solution of the mathematical model. One step in the verification process—called code verification—ensures that the implemented numerical algorithm is a faithful representation of the underlying mathematical model, including partial differential or integral equations, initial and boundary conditions, and auxiliary relationships. In this paper, the code verification process is applied to spatiotemporal heat conduction problems in Bison. Simultaneous refinement of the discretization in space and time is employed to reveal any potential mistakes in the numerical algorithms for the interactions between the spatial and temporal components of the solution. For each verification problem, the correct spatial and temporal order of accuracy is demonstrated for both first- and second-order accurate finite elements and a variety of time-integration schemes. These results provide strong evidence that the Bison numerical algorithm for solving spatiotemporal problems reliably represents the underlying mathematical model in MOOSE. The selected test problems can also be used in other simulation tools that numerically solve for conduction or diffusion.

References

1.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
, 1st ed.,
Cambridge University Press
,
Cambridge, UK
.
2.
Oberkampf
,
W. L.
,
Pilch
,
M.
, and
Trucano
,
T. G.
,
2007
, “
Predictive Capability Maturity Model for Computational Modeling and Simulation
,” Sandia National Laboratories (SNL), Albuquerque, NM, Report No. SAND2007-5948.
3.
Hills
,
R. G.
,
Witkowski
,
W. R.
,
Rider
,
W. J.
,
Trucano
,
T. G.
, and
Urbina
,
A.
,
2013
,
Development of a Fourth Generation Predictive Capability Maturity Model
,
Sandia National Laboratories
, Albuquerque, NM, Report No. SAND2013-8051.
4.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishing
,
Albuquerque, NM
.
5.
National Research Council
,
2012
,
Assessing the Reliability of Complex Models
,
The National Academies Press
,
Washington, DC
.
6.
Williamson
,
R.
,
Hales
,
J.
,
Novascone
,
S.
,
Tonks
,
M.
,
Gaston
,
D.
,
Permann
,
C.
,
Andrs
,
D.
, and
Martineau
,
R.
,
2012
, “
Multidimensional Multiphysics Simulation of Nuclear Fuel Behavior
,”
J. Nucl. Mater.
,
423
(
1–3
), pp.
149
163
.10.1016/j.jnucmat.2012.01.012
7.
Williamson
,
R.
,
Hales
,
J.
,
Novascone
,
S.
,
Pastore
,
G.
,
Gamble
,
K.
,
Spencer
,
B.
,
Jiang
,
W.
, et al.,
2021
, “
BISON: A Flexible Code for Advanced Simulation of the Performance of Multiple Nuclear Forms
,”
Nucl. Technol.
,
207
(
7
), pp.
954
980
.10.1080/00295450.2020.1836940
8.
Permann
,
C.
,
Gaston
,
D.
,
Andrs
,
D.
,
Carlsen
,
R.
,
Kong
,
F.
,
Lindsay
,
A.
,
Miller
,
J.
, et al.,
2020
, “
MOOSE: Enabling Massively Parallel Multiphysics Simulation
,”
SoftwareX
,
11
, p.
100430
.10.1016/j.softx.2020.100430
9.
Kirk
,
B. S.
,
Peterson
,
J. W.
,
Stogner
,
R. H.
, and
Carey
,
G. F.
,
2006
, “
libMesh: A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations
,”
Eng. Comput.
,
22
(
3–4
), pp.
237
254
.10.1007/s00366-006-0049-3
10.
Balay
,
S.
, Brune, P., Buschelman, K., Gropp, W., Karpeyev, D., Kaushik, D., Knepley, M., et al.,
2016
,
PETSc Users Manual
, Argonne National Laboratory, Argonne, IL, Report No. ANL-95/11 Rev 3.7.
11.
Jiang
,
W.
,
Hales
,
J. D.
,
Spencer
,
B. W.
,
Collin
,
B. P.
,
Slaughter
,
A. E.
,
Novascone
,
S. R.
,
Toptan
,
A.
,
Gamble
,
K. A.
, and
Gardner
,
R.
,
2021
, “
TRISO Particle Fuel Performance and Failure Analysis With BISON
,”
J. Nucl. Mater.
,
548
, p.
152795
.10.1016/j.jnucmat.2021.152795
12.
Hales
,
J.
,
Novascone
,
S.
,
Spencer
,
B.
,
Williamson
,
R.
,
Pastore
,
G.
, and
Perez
,
D.
,
2014
, “
Verification of the BISON Fuel Performance Code
,”
Ann. Nucl. Energy
,
71
, pp.
81
90
.10.1016/j.anucene.2014.03.027
13.
Toptan
,
A.
,
Porter
,
N. W.
,
Hales
,
J. D.
,
Williamson
,
R. L.
, and
Pilch
,
M.
,
2020
, “
FY20 Verification of BISON Using Analytic and Manufactured Solutions
,” Consortium for Advanced Simulation of LWRs (CASL), Albuquerque, NM, Report No. CASL-U-2020-1939-000; SAND2020-3887R.
14.
Hales
,
J. D.
,
Jiang
,
W.
,
Toptan
,
A.
, and
Gamble
,
K. A.
,
2021
, “
Modeling Fission Product Diffusion in TRISO Fuel Particles With BISON
,”
J. Nucl. Mater.
,
548
(
5
), p.
152840
.10.1016/j.jnucmat.2021.152840
15.
Hales
,
J. D.
,
Toptan
,
A.
,
Jiang
,
W.
, and
Spencer
,
B.
,
2022
, “
Numerical Evaluation of AGR-2 Fission Product Release
,”
J. Nucl. Mater.
,
558
(
1
), p.
153325
.10.1016/j.jnucmat.2021.153325
16.
Jiang
,
W.
,
Toptan
,
A.
,
Hales
,
J. D.
,
Casagranda
,
A.
,
Spencer
,
B. W.
, and
Novascone
,
S. R.
,
2021
, “
Fission Product Transport in TRISO Particles and Pebbles
,” Idaho National Laboratory, Idaho Falls, ID, Report No. INL/EXT-21-63549.
17.
Burnett
,
D. S.
,
1987
,
Finite Element Analysis From Concepts to Applications
,
Addison-Wesley Publishing Company
,
Reading, MA
.
18.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Zhu
,
J. Z.
,
2013
,
The Finite Element Method Its Basis & Fundamentals
,
Elsevier
,
New York
.
19.
De Arantes E Oliveira
,
E.
,
1968
, “
Theoretical Foundations of the Finite Element Method
,”
Int. J. Solids Struct.
,
4
(
10
), pp.
929
952
.10.1016/0020-7683(68)90014-0
20.
Aziz
,
A. K.
,
1972
,
The Mathematical Foundations of the Finite Element Method With Applications to Partial Differential Equations
,
Academic Press
,
New York
.
21.
Oden
,
J. T.
, and
Reddy
,
J. N.
,
1976
,
An Introduction to the Mathematical Theory of Finite Elements
,
Wiley
,
New York
.
22.
Babuska
,
I.
, and
Szabo
,
B.
,
1982
, “
On the Rates of Convergence of the Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
18
(
3
), pp.
323
341
.10.1002/nme.1620180302
23.
Babuska
,
I.
,
Szabo
,
B. A.
, and
Katz
,
IN.
,
1981
, “
The p-Version of the Finite Element Method
,”
SIAM J. Numer. Anal.
,
18
(
3
), pp.
515
545
. 10.1137/0718033
24.
Mooseframework, 2022, “
MOOSE: An Open-Source, Parallel Finite Element Framework,” accessed Mar. 29,
2022, https://mooseframework.inl.gov/
25.
Burkardt
,
J.
, and
Trenchea
,
C.
,
2020
, “
Refactorization of the Midpoint Rule
,”
Appl. Math. Lett.
,
107
, p.
106438
.10.1016/j.aml.2020.106438
26.
Crank
,
J.
, and
Nicolson
,
P.
,
1947
, “
A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat Conduction Type
,”
Math. Proc. Cambridge Philos. Soc.
,
43
(
1
), pp.
50
67
.10.1017/S0305004100023197
27.
Curtiss
,
C. F.
, and
Hirschfelder
,
J. O.
,
1952
, “
Integration of Stiff Equations
,”
Proc. Natl. Acad. Sci.
,
38
(
3
), pp.
235
243
.10.1073/pnas.38.3.235
28.
Kennedy
,
C.
, and
Carpenter
,
M.
,
2019
, “
Diagonally Implicit Runge–Kutta Methods for Stiff ODEs
,”
Appl. Numer. Math.
,
146
, pp.
221
244
.10.1016/j.apnum.2019.07.008
29.
Alexander
,
R.
,
1977
, “
Diagonally Implicit Runge-Kutta Methods for Stiff Odes
,”
SIAM J. Numer. Anal.
,
14
(
6
), pp.
1006
1021
.10.1137/0714068
30.
Toptan
,
A.
,
Porter
,
N.
,
Hales
,
J.
,
Spencer
,
B.
,
Pilch
,
M.
, and
Williamson
,
R.
,
2020
, “
Construction of a Code Verification Matrix for Heat Conduction With Finite Element Code Applications
,”
J. Verif. Valid. Uncert. Quantif.
,
5
(
4
), p.
11
.10.1115/1.4049037
31.
Kamm
,
J.
,
Rider
,
W.
, and
Brock
,
J.
,
2003
, “
Combined Space and Time Convergence Analysis of a Compressible Flow Algorithm
,”
AIAA
Paper No. 2003-4241.10.2514/6.2003-4241
32.
Richards
,
S. A.
,
1997
, “
Completed Richardson Extrapolation in Space and Time
,”
Commun. Numer. Methods Eng.
,
13
(
7
), pp.
573
582
.10.1002/(SICI)1099-0887(199707)13:7<573::AID-CNM84>3.0.CO;2-6
33.
Shunn
,
L.
,
Ham
,
F.
, and
Moin
,
P.
,
2012
, “
Verification of Variable-Density Flow Solvers Using Manufactured Solutions
,”
J. Comput. Phys.
,
231
(
9
), pp.
3801
3827
.10.1016/j.jcp.2012.01.027
34.
Xue
,
W.
,
Wang
,
H.
, and
Roy
,
C. J.
,
2021
, “
Code Verification for 2D Unsteady Flows in SENSEI
,”
AIAA Paper No. 2021-1742.
35.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
, 2nd ed.,
Clarendon Press
, Oxford, UK.
36.
McMasters
,
R.
,
de Monte
,
F.
,
D'Alessandro
,
G.
, and
Beck
,
J.
,
2021
, “
Verification of ANSYS and MATLAB Heat Conduction Results Using an “Intrinsically” Verified Exact Analytical Solution
,”
J. Verification, Validation Uncertainty Quantif.
,
6
(
2
), p.
021005
.10.1115/1.4050610
You do not currently have access to this content.