In this study, an r-adaptation technique for mesh adaptation is employed for reducing the solution discretization error, which is the error introduced due to spatial and temporal discretization of the continuous governing equations in numerical simulations. In r-adaptation, mesh modification is achieved by relocating the mesh nodes from one region to another without introducing additional nodes. Truncation error (TE) or the discrete residual is the difference between the continuous and discrete form of the governing equations. Based upon the knowledge that the discrete residual acts as the source of the discretization error in the domain, this study uses discrete residual as the adaptation driver. The r-adaptation technique employed here uses structured meshes and is verified using a series of one-dimensional (1D) and two-dimensional (2D) benchmark problems for which exact solutions are readily available. These benchmark problems include 1D Burgers equation, quasi-1D nozzle flow, 2D compression/expansion turns, and 2D incompressible flow past a Karman–Trefftz airfoil. The effectiveness of the proposed technique is evident for these problems where approximately an order of magnitude reduction in discretization error (when compared with uniform mesh results) is achieved. For all problems, mesh modification is compared using different schemes from literature including an adaptive Poisson grid generator (APGG), a variational grid generator (VGG), a scheme based on a center of mass (COM) analogy, and a scheme based on deforming maps. In addition, several challenges in applying the proposed technique to real-world problems are outlined.

References

1.
Eiseman
,
P. R.
,
1987
, “
Adaptive Grid Generation
,”
Comput. Methods Appl. Mech. Eng.
,
64
(
1–3
), pp.
321
376
.
2.
Anderson
,
D. A.
,
1987
, “
Equidistribution Schemes, Poisson Generators, and Adaptive Grids
,”
Appl. Math. Comput.
,
24
(
3
), pp.
211
227
.
3.
Hawken
,
D.
,
Gottlieb
,
J.
, and
Hansen
,
J.
,
1991
, “
Review of Some Adaptive Node-Movement Techniques in Finite-Element and Finite-Difference Solutions of Partial Differential Equations
,”
J. Comput. Phys.
,
95
(
2
), pp.
254
302
.
4.
Baker
,
T. J.
,
1997
, “
Mesh Adaptation Strategies for Problems in Fluid Dynamics
,”
Finite Elem. Anal. Des.
,
25
(
3–4
), pp.
243
273
.
5.
Dwight
,
R. P.
,
2008
, “
Heuristic a Posteriori Estimation of Error Due to Dissipation in Finite Volume Schemes and Application to Mesh Adaptation
,”
J. Comput. Phys.
,
227
(
5
), pp.
2845
2863
.
6.
Ainsworth
,
M.
, and
Oden
,
J.
,
2000
,
A Posteriori Error Estimation in Finite Element Analysis
,
Wiley Interscience
,
New York
.
7.
Roy
,
C. J.
,
2009
, “
Strategies for Driving Mesh Adaptation in CFD
,”
AIAA
Paper No. 2009-1302.
8.
Zhang
,
X.
,
Trepanier
,
J.-Y.
, and
Camarero
,
R.
,
2000
, “
A Posteriori Error Estimation for Finite-Volume Solutions of Hyperbolic Conservation Laws
,”
Comput. Methods Appl. Mech. Eng.
,
185
(
1
), pp.
1
19
.
9.
Gu
,
X.
, and
Shih
,
T.
,
2001
, “
Differentiating Between Source and Location of Error for Solution-Adaptive Mesh Refinement
,”
AIAA
Paper No. 2001–2660.
10.
Zienkiewicz
,
O. C.
, and
Zhu
,
J. Z.
,
1992
, “
The Superconvergent Patch Recovery and a Posteriori Error Estimates—Part 2: Error Estimates and Adaptivity
,”
Int. J. Numer. Methods Eng.
,
33
(
7
), pp.
1365
1382
.
11.
Laflin
,
K. R.
,
1997
, “
Solver-Independent r-Refinement Adaptation for Dynamic Numerical Simulations
,” Ph.D. thesis, North Carolina State University, Raleigh, NC.
12.
McRae
,
D. S.
,
2000
, “
r-Refinement Grid Adaptation Algorithms and Issues
,”
Comput. Methods Appl. Mech. Eng.
,
189
(
4
), pp.
1161
1182
.
13.
Venditti
,
D. A.
, and
Darmofal
,
D. L.
,
2000
, “
Adjoint Error Estimation and Grid Adaptation for Functional Outputs: Application to Quasi-One-Dimensional Flow
,”
J. Comput. Phys.
,
164
(
1
), pp.
204
227
.
14.
Venditti
,
D. A.
, and
Darmofal
,
D. L.
,
2002
, “
Grid Adaptation for Functional Outputs: Application to Two-Dimensional Inviscid Flows
,”
J. Comput. Phys.
,
176
(
1
), pp.
40
69
.
15.
Fidkowski
,
K. J.
, and
Darmofal
,
D. L.
,
2011
, “
Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics
,”
AIAA J.
,
49
(
4
), pp.
673
694
.
16.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
17.
Borsboom
,
M.
,
1998
, “
Development of an Error-Minimizing Adaptive Grid Method
,”
Appl. Numer. Math.
,
26
(
1–2
), pp.
13
21
.
18.
Sod
,
G. A.
,
1978
, “
A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws
,”
J. Comput. Phys.
,
27
(
1
), pp.
1
31
.
19.
Klopfer
,
G. H.
, and
McRae
,
D. S.
,
1983
, “
Nonlinear Truncation Error Analysis of Finite Difference Schemes for the Euler Equations
,”
AIAA J.
,
21
(
4
), pp.
487
494
.
20.
Fraysse
,
F.
,
Rubio
,
G.
,
de Vicente
,
J.
, and
Valero
,
E.
,
2014
, “
Quasi-a Priori Mesh Adaptation and Extrapolation to Higher Order Using τ-Estimation
,”
Aerosp. Sci. Technol.
,
38
, pp.
76
87
.
21.
Tyson
,
W. C.
,
2015
, “
Application of r-Adaptation Techniques for Discretization Error Improvement in CFD
,”
Master's thesis
, Virginia Polytechnic Institute and State University, Blacksburg, VA.https://vtechworks.lib.vt.edu/handle/10919/78061
22.
Phillips
,
T. S.
,
Derlaga
,
J. M.
,
Roy
,
C. J.
, and
Borggaard
,
J.
,
2017
, “
Error Transport Equation Boundary Conditions for the Euler and Navier–Stokes Equations
,”
J. Comput. Phys.
,
330
, pp.
46
64
.
23.
Russell
,
R. D.
, and
Christiansen
,
J.
,
1978
, “
Adaptive Mesh Selection Strategies for Solving Boundary Value Problems
,”
SIAM J. Numer. Anal.
,
15
(
1
), pp.
59
80
.
24.
Kautsky
,
J.
, and
Nichols
,
N.
,
1980
, “
Equidistributing Meshes With Constraints
,”
SIAM J. Sci. Stat. Comput.
,
1
(
4
), pp.
499
511
.
25.
Anderson
,
D. A.
,
1990
, “
Grid Cell Volume Control With an Adaptive Grid Generator
,”
Appl. Math. Comput.
,
35
(
3
), pp.
209
217
.
26.
Winslow
,
A.
,
1966
, “
Numerical Solution of the Quasi-Linear Poisson Equation
,”
J. Comput. Phys.
,
1
(
2
), pp.
149
172
.
27.
Brackbill
,
J.
, and
Saltzman
,
J.
,
1982
, “
Adaptive Zoning for Singular Problems in Two Dimensions
,”
J. Comput. Phys.
,
46
(
3
), pp.
342
368
.
28.
Brackbill
,
J.
,
1993
, “
An Adaptive Grid With Directional Control
,”
J. Comput. Phys.
,
108
(
1
), pp.
38
50
.
29.
Huang
,
W.
, and
Russell
,
R.
,
2011
,
Adaptive Moving Mesh Methods
,
Springer
,
New York
.
30.
Benson
,
R.
, and
McRae
,
D.
,
1991
, “
A Solution-Adaptive Mesh Algorithm for Dynamic/Static Refinement of Two and Three Dimensional Grids
,”
Third International Conference on Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, Barcelona, Spain, June 3--7
, pp.
185
199
.
31.
Liao
,
G.
, and
Anderson
,
D.
,
1992
, “
A New Approach to Grid Generation
,”
Appl. Anal.
,
44
(
3–4
), pp.
285
298
.
32.
Moser
,
J.
,
1965
, “
On the Volume Elements on a Manifold
,”
Trans. Am. Math. Soc.
,
120
(
2
), pp.
286
294
.
33.
Grisham
,
J. R.
,
Vijayakumar
,
N.
,
Liao
,
G.
,
Dennis
,
B. H.
, and
Lu
,
F. K.
,
2015
, “
A Comparison Between Local h-Refinement and a Novel r-Refinement Method
,”
AIAA
Paper No. 2015-2040.
34.
Choudhary
,
A.
,
2014
, “
Verification of Compressible and Incompressible Computational Fluid Dynamics Codes and Residual-Based Mesh Adaptation
,”
Ph.D. thesis
, Virginia Polytechnic Institute and State University, Blacksburg, VA.https://vtechworks.lib.vt.edu/handle/10919/51169
35.
Roe
,
P.
,
1997
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
135
(
2
), pp.
250
258
.
36.
van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme—V: A Second-Order Sequel to Godunov's Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.
37.
Derlaga
,
J. M.
,
Phillips
,
T.
, and
Roy
,
C. J.
,
2013
, “
SENSEI Computational Fluid Dynamics Code: A Case Study in Modern Fortran Software Development
,”
AIAA
Paper No. 2013-2450.
38.
van Leer
,
B.
,
1982
, “
Flux-Vector Splitting for the Euler Equations
,”
Eighth International Conference on Numerical Methods in Fluid Dynamics
, Aachen, Germany, June 28–July 2, pp.
507
512
.
39.
Beam
,
R. M.
, and
Warming
,
R.
,
1976
, “
An Implicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation-Law Form
,”
J. Comput. Phys.
,
22
(
1
), pp.
87
110
.
40.
Banks
,
J.
,
Aslam
,
T.
, and
Rider
,
W.
,
2008
, “
On Sub-Linear Convergence for Linearly Degenerate Waves in Capturing Schemes
,”
J. Comput. Phys.
,
227
(
14
), pp.
6985
7002
.
41.
Karamcheti
,
K.
,
1966
,
Principles of Ideal-Fluid Aerodynamics
,
Krieger Publishing Company
,
Malabar, FL
.
42.
Vassberg
,
J. C.
, and
Jameson
,
A.
,
2010
, “
In Pursuit of Grid Convergence for Two-Dimensional Euler Solutions
,”
J. Aircr.
,
47
(
4
), pp.
1152
1166
.
43.
Barth
,
T.
,
1993
, “
Recent Developments in High Order k-Exact Reconstruction on Unstructured Meshes
,”
AIAA
Paper No. 93-0668.
44.
Sharbatdar
,
M.
, and
Ollivier-Gooch
,
C.
,
2018
, “
Mesh Adaptation Using C1 Interpolation of the Solution in an Unstructured Finite Volume Solver
,”
Int. J. Numer. Methods Fluids
,
86
(
10
), pp.
637
654
.
45.
Jackson
,
C. W.
, and
Roy
,
C. J.
,
2015
, “
A Multi-Mesh CFD Technique for Adaptive Mesh Solutions
,”
AIAA
Paper No. 2015-1958.
You do not currently have access to this content.