The Noh verification test problem is extended beyond the commonly studied ideal gamma-law gas to more realistic equations of state (EOSs) including the stiff gas, the Noble-Abel gas, and the Carnahan–Starling EOS for hard-sphere fluids. Self-similarity methods are used to solve the Euler compressible flow equations, which, in combination with the Rankine–Hugoniot jump conditions, provide a tractable general solution. This solution can be applied to fluids with EOSs that meet criterion such as it being a convex function and having a corresponding bulk modulus. For the planar case, the solution can be applied to shocks of arbitrary strength, but for the cylindrical and spherical geometries, it is required that the analysis be restricted to strong shocks. The exact solutions are used to perform a variety of quantitative code verification studies of the Los Alamos National Laboratory Lagrangian hydrocode free Lagrangian (FLAG).

References

1.
Noh
,
W. F.
,
1987
, “
Errors for Calculations of Strong Shocks Using an Artificial Viscosity and an Artificial Heat Flux
,”
J. Comput. Phys.
,
72
(
1
), pp.
78
120
.
2.
Gehmeyr
,
M.
,
Cheng
,
B.
, and
Mihalas
,
D.
,
1997
, “
Noh's Constant-Velocity Shock Problem Revisited
,”
Shock Waves
,
7
(
5
), pp.
255
274
.
3.
Ramsey
,
S.
,
Boyd
,
Z.
, and
Burnett
,
S.
,
2016
, “
Solution of the Noh Problem Using the Universal Symmetry of the Gas Dynamics Equations
,”
Shock Waves
,
27
(
3
), pp.
477
485
.
4.
Jones
,
J. B.
, and
Dugan
,
R. E.
,
1995
, Engineering Thermodynamics, Prentice Hall, Upper Saddle River, NJ, p.
244
.
5.
Axford
,
R. A.
,
2000
, “
Solutions of the Noh Problem for Various Equations of State Using Lie Groups
,”
Laser Part. Beams
,
18
(
1
), pp.
93
100
.
6.
Menikoff
,
R.
, and
Plohr
,
B. J.
,
1989
, “
The Riemann Problem for Fluid Flow of Real Materials
,”
Rev. Mod. Phys
,
61
(
1
), pp.
75
130
.
7.
Banks
,
J. W.
,
2010
, “
On Exact Conservation for the Euler Equations With Complex Equations of State
,”
Commun. Comput. Phys.
,
8
(
5
), pp.
995
1015
.
8.
Whitham
,
G. B.
,
1974
,
Linear and Nonlinear Waves
,
Wiley
,
New York
.
9.
Toro
,
E. F.
,
1997
,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
, Springer, Berlin.
10.
Harlow
,
F. H.
, and
Pracht
,
W. E.
,
1966
, “
Formation and Penetration of High-Speed Collapse Jets
,”
Phys. Fluids
,
9
(
10
), pp.
1951
1959
.
11.
Harlow
,
F. H.
, and
Amsden
,
A. A.
,
1971
, “
Fluid Dynamics
,” Los Alamos Scientific Laboratory Monograph, Los Alamos, NM, Report No. LA-4700.
12.
Wei
,
Y. S.
, and
Sadus
,
R. J.
,
2000
, “
Equations of State for the Calculation of Fluid-Phase Equilibria
,”
AIChE J.
,
46
(
1
), pp.
169
196
.
13.
Cole
,
R. H.
,
1948
,
Underwater Explosions
,
Princeton University Press
,
Princeton, NJ
.
14.
Courant
,
R.
, and
Friedrichs
,
K. O.
,
1944
,
Supersonic Flow and Shock Waves: A Manual on the Mathematical Theory of Non-Linear Wave Motion
,
Courant Institute
,
NYU, New York
.
15.
Eliezer
,
S.
,
Ghatak
,
A.
, and
Hora
,
H.
,
2002
,
Fundamentals of Equations of State
,
World Scientific
,
Singapore
.
16.
Weixin
,
L.
,
1986
, “
Simplified Equation of State P= P (ρ, E) and P= P (ρ, T) for Condensed Matter
,”
Shock Waves in Condensed Matter
,
Y. M.
Gupta
, ed.,
Plenum Press
,
New York
, pp.
167
173
.
17.
Johnston
,
I. A.
,
2005
, “
The Noble-Abel Equation of State: Thermodynamic Derivations for Ballistics Modelling
,” Defence Science and Technology Organisation, Edinburgh, Australia, Report No.
DSTO-TN-0670
http://www.dtic.mil/docs/citations/ADA454209.
18.
Corner
,
J.
,
1950
,
Theory of the Interior Ballistics of Guns
,
Wiley
,
New York
.
19.
Baibuz
,
V. F.
,
Zitserman
,
V. Y.
,
Golubushkin
,
L. M.
, and
Malyshev
,
I. G.
,
1986
, “
The Covolume and Equation of State of High-Temperature Real Gases
,”
J. Eng. Phys. Thermophys.
,
51
(
2
), pp.
955
956
.
20.
Khaksarfard
,
R.
,
Kameshki
,
M. R.
, and
Paraschivoiu
,
M.
,
2010
, “
Numerical Simulation of High Pressure Release and Dispersion of Hydrogen Into Air With Real Gas Model
,”
Shock Waves
,
20
(
3
), pp.
205
216
.
21.
Chenoweth
,
D. R.
,
1983
, “
Gas-Transfer Analysis. Section H—Real Gas Results Via the Van Der Waals Equation of State and Virial-Expansion Extensions of Its Limiting Abel-Noble Form
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND-83-8229.
22.
Emanuel
,
G.
,
1987
,
Advanced Classical Thermodynamics
,
American Institute of Aeronautics and Astronautics
,
Washington, DC
.
23.
Annamalai
,
K.
,
Puri
,
I. K.
, and
Jog
,
M. A.
,
2011
,
Advanced Thermodynamics Engineering
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
24.
Hirn
,
G. A.
,
1875
,
Théorie Mécanique De La Chaleur
, 3rd ed.,
Gauthier-Villars
,
Paris, France
.
25.
Partington
,
J. R.
,
1949
,
An Advanced Treatise on Physical Chemistry
, Vol.
1
,
Longmans, Green Co
,
London
.
26.
Cagle
,
F. W.
, Jr.
,
1972
, “
A Classification of Equations of State
,”
J. Chem. Educ.
,
49
(
5
), pp.
345
347
.
27.
van der Waals
,
J. D.
, and
Rowlinson
,
J. S.
,
2004
,
On the Continuity of the Gaseous and Liquid States
,
Dover
,
Mineola, NY
.
28.
Xiang
,
H. W.
,
2005
,
The Corresponding-States Principle and Its Practice: Thermodynamic, Transport and Surface Properties of Fluids
,
Elsevier
,
Amsterdam, The Netherlands
.
29.
Carnahan
,
N. F.
, and
Starling
,
K. E.
,
1969
, “
Equation of State for Nonattracting Rigid Spheres
,”
J. Chem. Phys
,
51
(
2
), pp.
635
636
.
30.
Hansen
,
J.-P.
, and
McDonald
,
I. R.
,
1986
,
Theory of Simple Liquids
,
Academic Press
,
San Diego, CA
.
31.
Song
,
Y.
,
Mason
,
E. A.
, and
Stratt
,
R. M.
,
1989
, “
Why Does the Carnahan-Starling Equation Work so Well?
,”
J. Chem. Phys
,
93
(
19
), pp.
6916
6919
.
33.
Burton
,
D. E.
,
1992
, “
Connectivity Structures and Differencing Techniques for Staggered-Grid Free-Lagrange Hydrodynamics
,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. UCRL-JC-110555.
34.
Burton
,
D. E.
,
1994
, “
Consistent Finite Volume Discretization of Hydrodynamic Conservation Laws for Unstructured Grids
,” Lawrence Livermore National Laboratory, Livermore, CA, Report No. UCRL-JC-118788.
35.
Caramana
,
E. J.
,
Burton
,
D. E.
,
Shashkov
,
M. J.
, and
Whalen
,
P. P.
,
1998
, “
The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy
,”
J. Comput. Phys.
,
146
(
1
), pp.
227
262
.
36.
Majda
,
A.
, and
Ralston
,
J.
,
1979
, “
Discrete Shock Profiles for Systems of Conservation Laws
,”
Commun. Pure Appl. Math.
,
32
(
4
), pp.
445
482
.
37.
Banks
,
J. W.
,
Aslam
,
T.
, and
Rider
,
W. J.
,
2008
, “
On Sub-Linear Convergence for Linearly Degenerate Waves in Capturing Schemes
,”
J. Comput. Phys.
,
227
(
14
), pp.
6985
7002
.
38.
Godunov
,
S. K.
,
1954
, “
Difference Methods for Shock Waves
,” Ph.D. dissertation, Moscow State University, Moscow, Russia.
39.
Godunov
,
S. K.
,
1959
, “
A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics
,”
Mat. Sb. (N.S.)
,
45
(
89
), pp.
271
306
http://mi.mathnet.ru/eng/msb4873.
40.
Ovsiannikov
,
L. V.
,
1982
,
Group Analysis of Differential Equations
,
Academic Press
,
New York
.
41.
Boyd
,
Z. M.
,
Ramsey
,
S. D.
, and
Baty
,
R. S.
,
2017
, “
On the Existence of Self-Similar Converging Shocks in Non-Ideal Materials
,”
Q. J. Mech. Appl. Math.
,
70
(
4
), pp.
401
417
.
42.
Clausius
,
R.
,
1880
, “
Ueber Das Verhalten Der Kohlensäure in Bezug Auf Druck, Volumen Und Temperatur
,”
Ann. Phys. (Berlin)
,
245
(
3
), pp.
337
357
.
43.
McQuarrie
,
D. A.
,
1973
,
Statistical Mechanics
,
Harper and Row
,
New York
.
44.
Moré
,
J. J.
,
Garbow
,
B. S.
, and
Hillstrom
,
K. E.
,
1980
, “
User Guide for MINPACK-1
,” Argonne National Laboratory, Washington, DC, Report No. ANL-80-74.
45.
Hendon
,
R. C.
, and
Ramsey
,
S. D.
,
2016
, “
Conduction Invariance in Similarity Solutions for Compressible Flow Code Verification
,”
ASME J. Verif. Valid. Uncertainty
,
1
(
2
), p.
021004
.
46.
Ramsey
,
S. D.
, and
Lilieholm
,
J. F.
,
2017
, “
Verification Assessment of Piston Boundary Conditions for Lagrangian Simulation of the Guderley Problem
,”
ASME J. Verif. Valid. Uncertainty
,
2
(
3
), p.
031001
.
47.
Ramsey
,
S. D.
,
Ivancic
,
P. R.
, and
Lilieholm
,
J. F.
,
2016
, “
Verification Assessment of Piston Boundary Conditions for Lagrangian Simulation of Compressible Flow Similarity Solutions
,”
ASME J. Verif. Valid. Uncertainty
,
1
(
2
), p.
021003
.
48.
Doebling
,
S.
, and
Ramsey
,
S.
,
2013
, “
Impact of Artificial Viscosity Models on Verification Assessment of a Lagrangian Hydrodynamics Code Using the Sedov Problem
,”
ASME Paper No. VVUQ-17-1015
.
49.
Pederson
,
C.
,
Brown
,
B.
, and
Morgan
,
N.
,
2016
, “
The Sedov Blast Wave as a Radial Piston Verification Test
,”
ASME J. Verif. Valid. Uncertainty
,
1
(
3
), p.
031001
.
50.
Morgan
,
N. R.
,
Burton
,
D. E.
, and
Lipnikov
,
K. N.
,
2013
, “
Theory and Motivation Behind the Godunov-Like Staggered Grid Hydrodynamic Approach in FLAG
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-13-24229.
51.
von Neumann
,
J.
, and
Richtmyer
,
R. D.
,
1950
, “
A Method for the Numerical Calculation of Hydrodynamic Shocks
,”
J. Appl. Phys.
,
21
(
3
), pp.
232
237
.
52.
Richtmyer
,
R. D.
, and
Morton
,
K. W.
,
1967
,
Difference Methods for Initial-Value Problems
, 2nd ed.,
Wiley
,
New York
.
53.
Rider
,
W. J.
,
2000
, “
Revisiting Wall Heating
,”
J. Comput. Phys.
,
162
(
2
), pp.
395
410
.
54.
Singleton
,
R.
, Jr.
,
Israel
,
D. M.
,
Doebling
,
S. W.
,
Woods
,
C. N.
,
Kaul
,
A.
,
Walter
,
J. W.
, and
Rogers
,
M. L.
,
2016
, “
ExactPack Documentation
,” Los Alamos National Laboratory, Los Alamos, NM, Report No.
LA-UR–16-23260
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-16-23260.
55.
Exactpack
,
2017
, “
Open Source Software Package Developed for Code Verification
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-CC-14-047.
56.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge, UK
.
57.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa
,
Albuquerque, NM
.
58.
Gittings
,
M.
,
Weaver
,
R.
,
Clover
,
M.
,
Betlach
,
T.
,
Byrne
,
N.
,
Coker
,
R.
,
Dendy
,
E.
,
Hueckstaedt
,
R.
,
New
,
K.
,
Oakes
,
W. R.
,
Ranta
,
D.
, and
Stefan
,
R.
,
2008
, “
The RAGE Radiation-Hydrodynamic Code
,”
Comput. Sci. Dis.
,
1
(
1
), p.
015005
.
59.
Yorke
,
C. E.
,
Howard
,
A. D.
,
Burnett
,
S. C.
,
Honnell
,
K. G.
,
Ramsey
,
S. D.
, and
Singleton
,
R. L.
, Jr.
,
2017
, “
Extension of the Planar Noh Problem to Aluminum, Iron, Copper, and Tungsten
,”
AIP Conf. Proc.
,
1979
(
1
), p.
140006
.
60.
Kamm
,
J. R.
,
2000
, “
Evaluation of the Sedov-Von Neumann-Taylor Blast Wave Solution
,” Los Alamos National Laboratory, Los Alamos, NM, Report No.
LA-UR-00-6055
http://cococubed.asu.edu/papers/kamm_2000.pdf.
61.
Hutchens
,
G. J.
,
1990
, “
Finite-Strength Shock Propagation for Alternative Equations of State
,” Ph.D. dissertation, University of Illinois at Urbana-Champaign, Urbana and Champaign, IL.
62.
Guderley
,
G. V.
,
1942
, “
Starke Kugelige Und Zylindrische Verdichtungsstösse in Der Nähe Des Kugelmittelpunktes Bzw. der Zylinderachse
,”
Luftfahrtforschung
,
19
(
9
), pp.
302
312
.
63.
Ramsey
,
S. D.
,
Schmidt
,
E. M.
,
Boyd
,
Z. M.
,
Lilieholm
,
J. F.
, and
Baty
,
R. S.
,
2017
, “
Converging Shock Flows for a Mie-Grüneisen Equation of State
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-UR-17-30971.
64.
Axford
,
R. A.
, and
Holm
,
D. D.
,
1978
, “
Spherical Shock Collapse in a Non-Ideal Medium
,”
IUTAM/IMU Symposium, Group Theoretical Methods in Mechanics
, Novosibirsk, Russia, Aug. 25–29, pp. 47–56.
65.
Sod
,
G. A.
,
1978
, “
A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws
,”
J. Comput. Phys.
,
27
(
1
), pp.
1
31
.
You do not currently have access to this content.