In centrifugal compressors, variable inlet guide vanes (IGVs) are used to control the mass flow rate with negligible change in pressure ratio and shaft speed. The efficient operation of IGVs is limited to the range of aerodynamic stability of their vane profiles. Thin symmetric profiles, which are usually used, tend to exhibit flow separation already at low setting angles, resulting in a rapid decrease in the global efficiency. Three different guide vane profiles, including a symmetric reference profile, a two-piece tandem profile with a variable angle, and an s-cambered profile, together with two auxiliary profiles, were considered. These variants were numerically and experimentally investigated at different setting angles, covering negative and positive inlet swirls, and at different operating points. The results show that tandem and s-cambered vanes have superior aerodynamic performance in comparison with the symmetric reference profile and extend the operating range of the compressor over which the efficiency remains high. The tandem profile shows better aerodynamic performance than the s-cambered profile at negative inlet swirl, while the asymmetric s-cambered profile offers an extended range of high efficiency at positive preswirl. Considering manufacturing requirements and cost, the s-cambered profile is preferred for applications with positive preswirl.

1.
Cui
,
M.
, 2002, “
Effect of Suction Elbow and Inlet Guide Vanes on the Flow Field in a Centrifugal Compressor
,” ASME Paper No. GT2002-30376.
2.
Coppinger
,
M.
, and
Swain
,
E.
, 1999, “
Performance Prediction and Optimization of an Industrial Centrifugal Compressor Inlet Guide Vane System
,”
Proceedings of the European Turbomachinery Conference
, London, UK, Paper No. C55/065/99.
3.
Swain
,
E.
, 1999, “
The Design of an Inlet Guide Vane Assembly for an Industrial Centrifugal Compressor
,”
Proceedings of the European Turbomachinery Conference
, London, UK, Paper No. S351/002/96.
4.
Whitfield
,
A.
, and
Abdullah
,
A. H.
, 1998, “
The Performance of a Centrifugal Compressor With High Inlet Prewhirl
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
487
493
.
5.
Simon
,
H.
,
Wallmann
,
T.
, and
Moenk
,
T.
, 1987, “
Improvements in Performance Characteristics of Single-Stage and Multistage Centrifugal Compressors by Simultaneous Adjustments of Inlet Guide Vanes and Diffuser Vanes
,”
ASME J. Turbomach.
0889-504X,
109
, pp.
41
47
.
6.
Chen
,
Y. N.
,
Hagelstein
,
D.
,
Kassens
,
I.
,
Hasemann
,
H.
,
Haupt
,
U.
, and
Rautenberg
,
M.
, 1999, “
Overshoot of the Rankine Vortex Formed in the Flow Field Behind the Inlet Guide Vane of Centrifugal Compressors
,” ASME Paper No. 99-GT-82.
7.
Hagelstein
,
D.
,
Prinsier
,
J.
, and
Van den Braembussche
,
R. A.
, 2001, “
Vorleitradoptimierung I: Vorleitrad—Laufrad Strömungsoptimierung und Interaktion—Abschlussbericht: Vorhaben Nr 705
,” FVV, Technical Report No. 726.
8.
Kassens
,
I.
, and
Rautenberg
,
M.
, 1999, “
Flow Measurements Behind the Inlet Guide Vane of a Centrifugal Compressor
,” ASME Paper No. 98-GT-86.
9.
Boehle
,
M.
,
Cagna
,
M.
, and
Itter
,
L.
, 2004, “
Compressible Flow in Inlet Guide Vanes With Mechanical Flaps
,” ASME Paper No. GT2004-53191.
10.
Sanz
,
J. M.
,
McFarland
,
E. R.
,
Sanger
,
N. L.
,
Gelder
,
T. F.
, and
Cavicchi
,
R. H.
, 1985, “
Design and Performance of a Fixed, Nonaccelerating Guide Vane Cascade That Operates Over an Inlet Flow Angle Range of 60 deg
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
477
484
.
11.
Doulgeris
,
G.
, and
Van den Braembussche
,
R.
, 2003, “
Optimization of Asymmetric Inlet Guide Vanes by Means of Inverse Design Method
,” von Kármán Institute for Fluid Dynamics (VKI), Technical Report No. SR 2003-28.
12.
Van den Braembussche
,
R. A.
,
Prinsier
,
J.
, and
Doulgeris
,
G.
, 2006, “
Design and Performance Evaluation of 3 Different Inlet Guide Vanes for Radial Compressors
,” von Kármán Institute for Fluid Dynamics (VKI), Technical Report No. 2007-03.
13.
Seume
,
J. R.
,
Goldhahn
,
E.
,
Steglich
,
T.
,
Van den Braembussche
,
R. A.
,
Prinsier
,
J.
,
Alsalihi
,
Z.
, and
Verstraete
,
T.
, 2007, “
Vorleitradoptimierung II: Strömungsvorgänge zwischen Vorleitapparat und Laufrad eines Radialverdichters und ihre gegenseitige Beeinflussung—Abschlussbericht: Vorhaben Nr. 846
,” FVV, Report No. 838.
14.
Van den Braembussche
,
R.
,
Léonard
,
O.
, and
Nekmouche
,
L.
, 1989, “
Subsonic and Transonic Blade Design by Means of Analysis Codes
,”
Computational Methods for Aerodynamic Design (Inverse) and Optimization
, AGARD No. CP 463, Paper 9.
15.
Bogers
,
P. F.
,
Van den Braembussche
,
R. A.
, and
Breugelmans
,
F. A. E.
, 1998, “
Design and Experimental Verification of an Optimized Compressor Blade
,” ASME Paper No. 98-GT-193.
16.
Bross
,
S.
, and
Stark
,
U.
, 1994, “
Entwickelung Neuer Schaufelgitter aus Profilen Variabler Geometie zum Einsatz in Leiträdern drallgeregelter Turbomaschinene—Teil I
,”
Forsch. Ingenieurwes.
0015-7899,
60
(
5
), pp.
120
132
.
17.
Hagelstein
,
D.
,
Hillewaert
,
K.
,
Van den Braembussche
,
R. A.
,
Engeda
,
A.
,
Keiper
,
R.
, and
Rautenberg
,
M.
, 2000, “
Experimental and Numerical Investigation of the Flow in a Centrifugal Compressor Volute
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
22
31
.
18.
Steglich
,
T.
,
Kitzinger
,
J.
,
Seume
,
J. R.
,
Van den Braembussche
,
R. A.
, and
Prinsier
,
J.
, 2008, “
Improved Impeller/Volute Combinations for Centrifugal Compressors
,”
ASME J. Turbomach.
0889-504X,
130
, p.
011014
.
19.
Steglich
,
T.
, 2007, “
Experimentelle Untersuchungen zum Verbesserungspotential einer Radialverdichterstufe mit interner Spirale
,” Ph.D. thesis, Fak. für Maschinenbau, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany.
You do not currently have access to this content.