Abstract

The paper presents a comprehensive analytical model for the characterization of von Karman vortex shedding in the wake of models of low-speed axial fan blades. The elaborated minimal model is based on the Reynolds-averaged Navier–Stokes and continuity equations. For validation purposes, hot-wire measurements have been carried out in a wind tunnel on representative blade profiles. The measurement data obtained for various streamwise positions downstream of the blade trailing edge, i.e., transversal profiles of mean velocity as well as root-mean-square of fluctuating velocity, are evaluated. As the experimental validation demonstrates, the minimal model fairly localizes the transversal position of the vortex centers and represents the motion of the vortices along the wake. The validated minimal model serves the following benefits: (a) an extensive understanding of the underlying physics related to the flow field featuring vortex shedding in the near-wake region (easy-to-use quantitative correlation among the characteristics of wake flow affected by the shed vortices); (b) extension of the literature-based methodology for determination of the transversal distance between the shed vortex rows, being used as a scaling parameter for the Strouhal number utilized in calculation of vortex shedding frequency; and (c) modeling the behavior of rows of shed vortices farther away from the trailing edge. Such behavior may influence the acoustic signature of VS, and, as such, it is to be considered in fan noise modeling.

References

1.
Kovásznay
,
L. S. G.
,
1949
, “
Hot-Wire Investigation of the Wake Behind Cylinders at Low Reynolds Numbers
,”
Proc. R. Soc. A
,
198
(
1053
), pp.
174
190
.
2.
Roshko
,
A.
,
1954
, “
On the Development of Turbulent Wakes From Vortex Streets
,” NACA Report 1191. https://ntrs.nasa.gov/citations/19930092207, Accessed January 5, 2023.
3.
Roshko
,
A.
,
1961
, “
Experiments on the Flow Past a Circular Cylinder at Very High Reynolds Number
,”
J. Fluid Mech
,
10
(
3
), pp.
345
356
.
4.
Okajima
,
A.
,
1982
, “
Strouhal Numbers of Rectangular Cylinders
,”
J. Fluid Mech.
,
123
, pp.
379
398
.
5.
Lyn
,
D. A.
,
Einav
,
S.
,
Rodi
,
W.
, and
Park
,
J. H.
,
1995
, “
A Laser-Doppler Velocimetry Study of Ensemble-Averaged Characteristics of the Turbulent Near Wake of a Square Cylinder
,”
J. Fluid Mech.
,
304
, pp.
285
319
.
6.
Sarioglu
,
M.
, and
Yavuz
,
T.
,
2000
, “
Vortex Shedding From Circular and Rectangular Cylinders Placed Horizontally in a Turbulent Flow
,”
Turk. J. Eng. Environ. Sci.
,
24
(
4
), pp.
217
228
.
7.
Abernathy
,
F. H.
,
1962
, “
Flow Over an Inclined Plate
,”
J. Basic Eng.
,
84
(
3
), pp.
380
388
.
8.
Chen
,
J. M.
, and
Fang
,
Y.
,
1996
, “
Strouhal Numbers of Inclined Flat Plates
,”
J. Wind Eng. Ind. Aerodyn.
,
61
(
2–3
), pp.
99
112
.
9.
Nakamura
,
Y.
,
Ohya
,
Y.
, and
Tsuruta
,
H.
,
1991
, “
Experiments on Vortex Shedding From Flat Plates With Square Leading and Trailing Edges
,”
J. Fluid Mech.
,
222
, pp.
437
447
.
10.
Paterson
,
R. W.
,
Vogt
,
P. G.
,
Fink
,
M. R.
, and
Munch
,
C. L.
,
1973
, “
Vortex Noise of Isolated Airfoils
,”
J. Aircr.
,
10
(
5
), pp.
296
302
.
11.
Tam
,
C. K.
,
1974
, “
Discrete Tones of Isolated Airfoils
,”
J. Acoust. Soc. Am.
,
55
(
6
), pp.
1173
1177
.
12.
Fink
,
M. R.
,
1975
, “
Prediction of Airfoil Tone Frequencies
,”
J. Aircr.
,
12
(
2
), pp.
118
120
.
13.
Wright
,
S. E.
,
1976
, “
The Acoustic Spectrum of Axial Flow Machines
,”
J. Sound Vib.
,
45
(
2
), pp.
165
223
.
14.
Longhouse
,
R. E.
,
1977
, “
Vortex Shedding Noise of Low Tip Speed, Axial Flow Fans
,”
J. Sound Vib.
,
53
(
1
), pp.
25
46
.
15.
Nash
,
E.
,
Lowson
,
M.
, and
McAlpine
,
A.
,
1999
, “
Boundary-Layer Instability Noise on Aerofoils
,”
J. Fluid Mech.
,
382
, pp.
27
61
.
16.
Desquesnes
,
G.
,
Terracol
,
M.
, and
Sagaut
,
P.
,
2007
, “
Numerical Investigation of the Tone Noise Mechanism Over Laminar Airfoils
,”
J. Fluid Mech.
,
591
, pp.
155
182
.
17.
Brooks
,
T. F.
,
Pope
,
D. S.
, and
Marcolini
,
M. A.
,
1989
, “
Airfoil Self-Noise and Prediction
,” NASA Reference Publication 1218. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890016302.pdf, Accessed January 5, 2023.
18.
Lee
,
C.
,
Chung
,
M. K.
, and
Kim
,
Y. H.
,
1993
, “
A Prediction Model for the Vortex Shedding Noise From the Wake of an Airfoil or Axial Flow Fan Blades
,”
J. Sound Vib.
,
164
(
2
), pp.
327
336
.
19.
Sasaki
,
S.
,
Kodama
,
Y.
,
Hayashi
,
H.
, and
Hatakeyama
,
M.
,
2005
, “
Influence of the Karman Vortex Street on the Broadband Noise Generated From a Multiblade Fan
,”
J. Therm. Sci.
,
14
(
3
), pp.
198
205
.
20.
Dou
,
H.
,
Li
,
Z.
,
Lin
,
P.
,
Wei
,
Y.
,
Chen
,
Y.
,
Cao
,
W.
, and
He
,
H.
,
2016
, “
An Improved Prediction Model of Vortex Shedding Noise From Blades of Fans
,”
J. Therm. Sci.
,
25
(
6
), pp.
526
531
.
21.
Yarusevych
,
S.
,
Sullivan
,
P. E.
, and
Kawall
,
J. G.
,
2009
, “
On Vortex Shedding From an Airfoil in Low-Reynolds-Number Flows
,”
J. Fluid Mech.
,
632
, pp.
245
271
.
22.
Yarusevych
,
S.
, and
Boutilier
,
M. S. H.
,
2011
, “
Vortex Shedding of an Airfoil at Low Reynolds Numbers
,”
AIAA J.
,
49
(
10
), pp.
2221
2227
.
23.
Daku
,
G.
, and
Vad
,
J.
,
2021
, “
Experiment-Based Preliminary Design Guidelines for Consideration of Profile Vortex Shedding From Low-Speed Axial Fan Blades
,”
ASME J. Turbomach.
,
143
(
6
), p.
061014
.
24.
Balla
,
E.
, and
Vad
,
J.
,
2021
, “
Refinement of a Semi-Empirical Method for the Estimation of Profile Vortex Shedding Frequency From Low-Speed Axial Fan Blade Sections
,”
Proceedings of the 14th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics, ETC14
,
Gdansk, Poland (Online)
,
Apr. 12–16
, Paper No. ETC2021-591.
25.
Roger
,
M.
, and
Moreau
,
S.
,
2010
, “
Extensions and Limitations of Analytical Airfoil Broadband Noise Models
,”
Int. J. Aeroacoust.
,
9
(
3
), pp.
273
305
.
26.
Daku
,
G.
, and
Vad
,
J.
,
2022
, “
Profile Vortex Shedding From Low-Speed Axial Fan Rotor Blades: A Modelling Overview
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
236
(
2
), pp.
349
363
.
27.
Vincze
,
M.
,
Borcia
,
I. D.
, and
Harlander
,
U.
,
2017
, “
Temperature Fluctuations in a Changing Climate: An Ensemble Based Experimental Approach
,”
Sci. Rep.
,
7
(
254
), p.
9
.
28.
Schlicthing
,
H.
,
1979
,
Boundary-Layer Theory
, 7th ed.,
McGraw-Hill
,
New York
.
29.
Yarusevych
,
S.
,
Kawall
,
J. G.
, and
Sullivan
,
P. E.
,
2008
, “
Separated-Shear-Layer Development on an Airfoil at Low Reynolds Numbers
,”
AIAA J.
,
46
(
12
), pp.
3060
3069
.
30.
Li
,
H.
,
Zhang
,
Y.
, and
Chen
,
H.
,
2021
, “
Numerical Simulation of Iced Wing Using Separating Shear Layer Fixed Turbulence Models
,”
AIAA J.
,
59
(
9
), pp.
3667
3681
.
31.
Albring
,
W.
,
1981
,
Elementarvorgűnge Fluider Wirbelbewegungen
,
Akademie-Verlag
,
Berlin
.
32.
Kaufmann
,
W.
,
1962
, “
Über die Ausbreitung Kreiszlindrischer Wirbel in Zahen Flüssigkeiten
,”
Ing. Arch.
,
1962
(
31
), pp.
1
9
.
33.
Scully
,
M. P.
, and
Sullivan
,
J. P.
,
1972
, “
Helicopter Rotor Wake Geometry and Airloads and Development of Laser Doppler Velocimeter for Use in Helicopter Rotor Wakes
,” Massachusetts Institute of Technology, Aerophysics Laboratory, Technical Report 1972; 183: MIT DSR No. 73032, https://apps.dtic.mil/sti/pdfs/AD0752628.pdf, Accessed January 5, 2023.
34.
Lakshminarayana
,
B.
,
1996
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
John Wiley and Sons
,
New York
.
You do not currently have access to this content.