Abstract

The multi-stage intermediate pressure turbine (IPT) is a key enabler of the thermodynamic cycle in geared turbofan engine architectures, where fan and turbine rotational speeds become decoupled by using a power gearbox (PGB) between them. This allows for the separate aerodynamic optimization of both components, an increase in engine bypass ratios, higher propulsive efficiency, and lower specific fuel consumption (SFC). Due to significant aerodynamic differences with conventional low pressure turbines (LPTs), multi-stage IPT designs present new aerodynamic, mechanical, and acoustic trade-offs. This work describes the aerodynamic design and experimental validation of a fully featured three-stage IP turbine, including a final row of outlet guide vanes (OGVs). Experiments have been conducted in a highly engine-representative transonic rotating wind tunnel at the CTA (Centro de Tecnologías Aeronáuticas, Spain), in which Mach and Reynolds numbers were matched to engine conditions. The design intent is shown to be fully validated. Efficiency levels are discussed in the context of a previous state-of-the-art LPT, tested in the same facility. It is argued that the efficiency gains of IPTs are due to higher pitch-to-chord ratios, which lead to a reduction in overall profile losses, and higher velocity ratios and lower turning angles, which reduce airfoil secondary flows and three-dimensional losses.

References

1.
ACARE
,
2017
, “
Strategic Research and Innovation Agenda
Update, Volume
1
,” Advisory Council for Aviation Research and Innovation in Europe, https://www.acare4europe.org/sites/acare4europe.org/files/document/ACARE-Strategic-Research-Innovation-Volume-1.pdf, Accessed January 13, 2022.
2.
Kurzke
,
J.
,
2009
, “
Fundamental Differences Between Conventional and Geared Turbofans
,”
ASME Turbo Expo 2009: Power for Land, Sea, and Air
, pp.
145
153
, Paper No. GT2009-59745.
3.
Mitchell
,
R.
, and
Whitehead
,
M.
,
2017
, “
The Rolls-Royce UltraFan® Engine
,”
XXIII International Symposium on Air Breathing Engines (ISABE)
,
Manchester, UK
,
Sept.
, Paper No. ISABE-2017-22511.
4.
Sheridan
,
W.
,
McCune
,
M.
, and
Winter
,
M.
,
2010
, “Geared Turbofan Engine: Driven by Innovation,”
Encyclopedia of Aerospace Engineering
,
Wiley
,
Hoboken, NJ
, pp.
1
7
.
5.
Gunston
,
B.
,
2006
,
World Encyclopedia of Aero Engines
, 5th ed.,
Sutton Publishing Ltd.
,
Stroud, UK
.
6.
Davenport
,
W. R.
, and
Dixon
,
G. J.
,
1973
, “
The Garrett-AiResearch Variable-Cycle TFE731 Turbofan Engine
,” SAE Technical Paper No. 730918.
7.
Cusick
,
M.
,
1981
, “
Avco Lycoming's ALF 502 High Bypass Fan Engine
,” SAE Technical Paper No. 810618.
8.
Ulizar
,
I.
, and
González
,
P.
,
2001
, “
Aerodynamic Design of a New Five Stage Low Pressure Turbine for the Rolls Royce Trent 500 Turbofan
,”
ASME Turbo Expo 2001: Power for Land, Sea, and Air
, p.
V001T03A062
, Paper No. 2001-GT-0440.
9.
González
,
P.
,
Lantero
,
M.
, and
Olabarria
,
V.
,
2006
, “
Low Pressure Turbine Design for Rolls-Royce Trent 900 Turbofan
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air
, pp.
875
881
, Paper No. GT2006-90997.
10.
Giovannini
,
M.
,
Rubechini
,
F.
,
Marconcini
,
M.
,
Arnone
,
A.
, and
Bertini
,
F.
,
2016
, “
Analysis of a LPT Rotor Blade for a Geared Engine: Part I—Aero-Mechanical Design and Validation
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
, Paper No. GT2016-57746.
11.
Malzacher
,
F. J.
,
Gier
,
J.
, and
Lippl
,
F.
,
2006
, “
Aerodesign and Testing of an Aero-Mechanically Highly Loaded LP Turbine
,”
ASME J. Turbomach.
,
128
(
4
), pp.
643
649
.
12.
Vázquez
,
R.
, and
Torre
,
D.
,
2012
, “
The Effect of Mach Number on the Loss Generation of LP Turbines
,”
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
, pp.
1131
1142
, Paper No. GT2012-68555.
13.
Torre
,
D.
,
García-Valdecasas
,
G.
, and
Cadrecha
,
D.
,
2017
, “
The Effect of Turning Angle on the Loss Generation of LP Turbines
,”
ASME Turbo Expo 2017: Turbine Technical Conference and Exposition
, pp.
1131
1142
, Paper No. GT2017-64580.
14.
Serrano
,
A.
, and
Fernández Aparicio
,
J. R.
,
2016
, “
Turbine Tone Noise Prediction Using a Linearized Computational Fluid Dynamics Solver: Comparison With Measurements
,”
ASME J. Turbomach.
,
138
(
6
), p.
061006
.
15.
Serrano
,
A.
,
Fernández Aparicio
,
J. R.
,
González
,
P.
, and
Torre
,
D.
,
2017
, “
Turbine Tone Noise Reduction via Optimized Acoustic Coupling
,”
XXIII International Symposium on Air Breathing Engines (ISABE)
,
Manchester, UK
,
Sept. 2017
, Paper No. ISABE-2017-21368.
16.
Smith
,
S. F.
,
1965
, “
A Simple Correlation of Turbine Efficiency
,”
Aeronaut. J.
,
69
(
655
), pp.
467
470
.
17.
Vázquez
,
R.
,
Cadrecha
,
D.
, and
Torre
,
D.
,
2003
, “
High Stage Loading Low Pressure Turbines. A New Proposal for an Efficiency Chart
,”
ASME Turbo Expo 2003: Power for Land, Sea, and Air
, pp.
211
222
, Paper No. GT2003-38374.
18.
Corral
,
R.
,
Gisbert
,
F.
, and
Pueblas
,
J.
,
2017
, “
Execution of a Parallel Edge-Based Navier-Stokes Solver on Commodity Graphics Processor Units
,”
Int. J. Comput. Fluid Dyn.
,
31
(
2
), pp.
93
108
.
19.
Contreras
,
J.
,
Corral
,
R.
,
Fernández-Castañeda
,
J.
,
Pastor
,
G.
, and
Vasco
,
C.
,
2002
, “
Semi-Unstructured Grid Methods for Turbomachinery Applications
,”
ASME Turbo Expo 2003: Power for Land, Sea, and Air
, pp.
947
955
, Paper No. 2002-GT- 30572.
20.
Gisbert
,
F.
,
Corral
,
R.
,
Chia
,
J. M.
, and
López
,
C.
,
2008
, “
Cavity Effects on the Design of Turbine Profiled End Walls
,”
ASME Turbo Expo 2008: Power for Land, Sea, and Air
, pp.
2543
2554
, Paper No. GT2008- 51136.
21.
Burgos
,
M. A.
,
Chia
,
J. M.
,
Corral
,
R.
, and
López
,
C.
,
2009
, “
Rapid Meshing of Turbomachinery Rows Using Semi-Unstructured Conformal Grids
,”
Eng. Comput.
,
26
(
4
), pp.
351
362
.
22.
Wilcox
,
D. C.
,
2008
, “
Formulation of the k-ω Turbulence Model Revisited
,”
AIAA J.
,
46
(
11
), pp.
2823
2838
.
23.
Moore
,
J. G.
, and
Moore
,
J.
,
1999
, “
Realizability
in
Turbulence Modelling for Turbomachinery CFD
,”
ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
, Paper No. 99-GT-24.
24.
Corral
,
R.
, and
Gisbert
,
F.
,
2010
, “
Prediction of Separation-Induced Transition Using a Correlation-Based Transition Model
,”
ASME Turbo Expo 2010: Turbine Technical Conference and Exposition
, Paper No. GT2010-23239.
25.
Gisbert
,
F.
, and
Corral
,
R.
, “
A Novel Mixing Plane Method Using Non-Reflecting Boundary Conditions for Multi-Row Analysis in Turbomachines
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
, Paper No. GT2015-42656.
26.
Vázquez
,
R.
,
Iturregui
,
J. J.
,
Arsuaga
,
M.
, and
Armañanzas
,
L.
,
2003
, “
A New Transonic Test Turbine Facility
,”
XVI International Symposium on Air Breathing Engines (ISABE)
,
Cleveland, OH
,
Aug. 31–Sept. 5
.
27.
Vázquez
,
R.
, and
Sánchez
,
J. M.
,
2003
, “
Temperature Measurement System for Low Pressure Ratio Turbine Testing
,”
ASME Turbo Expo 2003: Power for Land, Sea, and Air
, pp.
527
539
, Paper No. GT2003-38685.
28.
Johansen
,
E. S.
,
Rediniotis
,
O. K.
, and
Jones
,
G.
,
2000
, “
The Compressible Calibration of Miniature Multi-Hole Probes
,”
J. Fluid. Eng.
,
123
(
1
), pp.
128
138
.
29.
Vázquez
,
R.
,
Quintana
,
P.
, and
Partida
,
F.
,
2006
, “
Miniaturised 5-Hole Fast Response Probes for Annular Cascade Testing on Transonic Conditions
,”
Proceedings of the XVIII Symposium on Measuring Techniques in Turbomachinery Transonic and Supersonic Flow in Cascades and Turbomachines
,
Thessaloniki, Greece
,
Sept.
, pp.
21
22
.
30.
Rojo
,
B.
,
2017
, “
Aerothermal Experimental Investigation of LPT-OGVs
,”
Ph.D. thesis
,
Chalmers University of Technology
,
Gothenburg, Sweden
, 978-91-7597-645-7
31.
ANSI/ASME
,
2013
,
Test Uncertainty
,
American Society of Mechanical Engineers
,
New York, NY
, PTC 19.1-2013.
32.
Pullan
,
G.
,
Denton
,
J.
, and
Dunkley
,
M.
,
2003
, “
An Experimental and Computational Study of the Formation of a Streamwise Shed Vortex in a Turbine Stage
,”
ASME J. Turbomach.
,
125
(
2
), pp.
291
297
.
33.
Binder
,
A.
, and
Romey
,
R.
,
1982
, “
Secondary Flow Effects and Mixing of the Wake Behind a Turbine Stator
,”
ASME 1982 International Gas Turbine Conference and Exhibit
, Paper No. 82-GT-46.
34.
Torre
,
D.
,
Vázquez
,
R.
,
Armañanzas
,
L.
,
Partida
,
F.
, and
García-Valdecasas
,
G.
,
2014
, “
The Effect of Airfoil Thickness on the Efficiency of Low-Pressure Turbines
,”
ASME J. Turbomach.
,
136
(
5
), p.
051014
.
35.
Saravanamuttoo
,
H. I.
,
Rogers
,
G. F. C.
,
Cohen
,
H.
,
Straznicky
,
P. V.
, and
Nix
,
A. C.
,
2017
,
Gas Turbine Theory
, 7th ed.,
Pearson Education Ltd.
,
Harlow, UK
.
36.
Kacker
,
S. C.
, and
Okapuu
,
U.
,
1982
, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
J. Eng. Power
,
104
(
1
), pp.
111
119
.
You do not currently have access to this content.