Abstract

One-dimensional (1D) modeling is critical for turbomachinery unsteady performance prediction and system response assessment of internal combustion engines. This paper uses a novel 1D modeling (TURBODYNA) and proposes two additional features for the application to a twin-entry turbocharger turbine. Compared to single-entry turbines, twin-entry turbines enhance turbocharger transient response and reduce engine exhaust valve overlap periods. However, out-of-phase high-frequency pulsating pressure waves lead to an unsteady mixing process from the two flows and pose great challenges to traditional 1D modeling. The present work resolves the mixing problem by directly solving mass, momentum, and energy conservation equations during the mixing process instead of applying constant pressure assumption at the limb–rotor joint. Comparisons of TURBODYNA and an experimentally validated CFD suggest that TURBODYNA cannot only provide a very good agreement on turbine performance but also accurately capture unsteady features due to flow field inertial and pressure wave propagation. Levels of accuracy achieved by TURBODYNA have proved superior to traditional 1D modeling on turbine performance and the generality of the current 1D modeling has been explored by extending the application to other turbine featuring distinct characteristics.

References

1.
IEA
,
2018
,
Emissions From Fuel Combustion: Highlights
,
International Energy Agency
,
Paris
.
2.
Leduc
,
P.
,
Dubar
,
B.
,
Ranini
,
A.
, and
Monnier
,
G.
,
2006
, “
Downsizing of Gasoline Engine: An Efficient Way to Reduce CO2 Emissions
,”
Oil Gas Sci. Technol.
,
58
(
1
), pp.
115
127
.
3.
Watson
,
N.
, and
Janota
,
M.
,
1982
,
Turbocharging the Internal Combustion Engine
, Vol. 5,
Macmillan International Higher Education
,
London
.
4.
Walkingshaw
,
J.
,
Georgios
,
J.
,
Tobias
,
S.
,
Dietmar
,
F.
, and
Nobuyuki
,
I.
,
2015
, “
A Comparison of a Mono, Twin and Double Scroll Turbine for Automotive Applications
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition
, GT2015-43240.
5.
Copeland
,
C.
,
Martinez-Botas
,
R.
,
Newton
,
P.
, and
Seiler
,
M.
,
2012
, “
A Comparison of Timescales Within a Pulsed Flow Turbocharger Turbine
,”
10th International Conference on Turbochargers and Turbocharging
,
London, UK
,
May 15–16
, pp.
389
404
.
6.
Yang
,
B.
, and
Martinez-botas
,
R.
,
2017
, “
Unsteady Evolution of Secondary Flows in a Mixed Flow Turbine
,” Global Propulsion and Power Forum, GPPF-2017-188.
7.
Costall
,
A. J.
,
Mcdavid
,
R. M.
,
Martinez-Botas
,
R.
, and
Baines
,
N. C.
,
2011
, “
Pulse Performance Modeling of a Twin Entry Turbocharger Turbine Under Full and Unequal Admission
,”
ASME J. Turbomach.
,
133
(
2
), p.
021005
.
8.
Chiong
,
M. S.
,
Rajoo
,
S.
,
Romagnoli
,
A.
,
Costall
,
A. W.
, and
Martinez-Botas
,
R.
,
2016
, “
One-Dimensional Pulse-Flow Modeling of a Twin-Scroll Turbine
,”
Energy
,
115
(
15
), pp.
1291
1304
.
9.
Winterbone
,
D. E.
, and
Pearson
,
R. J.
,
2000
,
Theory of Engine Manifold Design: Wave Action Methods for IC Engines
,
Wiley-Blackwell
,
Hoboken, NJ
.
10.
Chen
,
H.
,
Hakeem
,
I.
, and
Martinez-Botas
,
R. F.
,
1996
, “
Modelling of a Turbocharger Turbine Under Pulsating Inlet Conditions
,”
J. Power Energy
,
210
(
5
), pp.
397
408
.
11.
Costall
,
A.
,
Szymko
,
S.
,
Martinez-Botas
,
R. F.
,
Filsinger
,
D.
, and
Ninkovic
,
D.
,
2006
, “
Assessment of Unsteady Behavior in Turbocharger Turbines
,”
ASME Turbo Expo
,
Barcelona, Spain
,
May 8–11
, Vol.
6
, pp.
1023
1038
.
12.
“GT Suite: FLow Theory Manual.” Technical Report, Gamma Technology.
13.
Yang
,
B.
, and
Martinez-Botas
,
R.
,
2019
, “
TURBODYNA: Centrifugal/Centripetal Turbomachinery Dynamic Simulator and Its Application on a Mixed Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101012
.
14.
Roe
,
P.
,
1981
, “
Approximate Riemann Solvers, Parameter and Difference Schemes
,”
J. Comput. Phys.
,
372
(
2
), pp.
357
372
.
15.
Poinsot
,
T. J.
, and
Lelef
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.
16.
Thompson
,
K. W.
,
1987
, “
Time Dependent Boundary Conditions for Hyperbolic Systems
,”
J. Comput. Phys.
,
68
(
1
), pp.
1
24
.
17.
Palfreyman
,
D.
, and
Martinez-Botas
,
R. F.
,
2005
, “
The Pulsating Flow Field in a Mixed Flow Turbocharger Turbine: An Experimental and Computational Study
,”
ASME J. Turbomach.
,
127
(
1
), pp.
144
155
.
18.
Newton
,
P.
,
Martinez-Botas
,
R.
, and
Martin
,
S.
,
2015
, “
A Three-Dimensional Computational Study of Pulsating Flow Inside a Double Entry Turbine
,”
ASME J. Turbomach.
,
137
(
3
), pp.
144
155
.
19.
Wei
,
J.
,
Xue
,
Y.
,
Yang
,
M.
,
Deng
,
K.
,
Wang
,
C.
, and
Wu
,
X.
,
2020
, “
A Reduced-Order Model of Twin-Entry Nozzleless Radial Turbine Based on Flow Characteristics
,”
Energy
,
214
(
3
), p.
118890
.
20.
Copeland
,
C. D.
,
2010
, “
Evaluation of Steady and Pulsating Flow Performance of a Double-Entry Turbocharger Turbine
,” PhD thesis,
Imperial College London
,
London
.
21.
Yang
,
B.
,
Martinez-Botas
,
R.
,
Newton
,
P.
,
Hoshi
,
T.
,
Gupta
,
B.
, and
Ibaraki
,
S.
,
2020
, “
One Dimensional Modelling on Twin-Entry Turbine: An Application of TURBODYNA
,”
14th International Conference on Turbochargers and Turbocharging
, Online,
May 11–12
, p.
97
.
You do not currently have access to this content.