Abstract

Centrifugal turbines have recently regained interest of the engineering community as they could serve as cost-effective alternatives in diverse energy applications. In this device, the working fluid expands in a centrifugal flowpath and entails rotation of concentric rings of airfoil-shaped blades. Yet in their current design paradigm, their meanline performance estimation and optimization have dubiously exploited axial turbine empirical correlations. To the authors knowledge, there are no theoretical nor practical foundation that could justify such practice. Hence, this paper intends to deliver an answer on this matter with application of the biased Kacker and Okapuu (KO) and Aungier (Ag) correlations on 33 pairs of similar axial and centrifugal cascades. The uncovered content is twofold. First, the Ag loss demonstrates a probability of achieving an error within ±15% of 44% whereas that of KO is lessened to 38% in axial cascades. The Ag deviation attains 15% which is thrice that of the KO under same condition. In second, the insensitivity of the Ag profile and secondary losses under drastic change of flow condition in the centrifugal cascades is proven to be practically significant. While the Ag deviation is still able to reach an accuracy of 11%. The coupling effect of the terms intervening in the correlations reveal to be weak. Thereupon, the empirical axial turbine loss correlations are unreliable in performance estimation or optimization of centrifugal turbines.

References

1.
Stodola
,
A.
,
1927
,
Steam and Gas Turbines: with a Supplement on the Prospects of the Thermal Prime Mover
, Vol.
2
.
McGraw-Hill
,
New York
.
2.
Pini
,
M.
,
Persico
,
G.
,
Casati
,
E.
, and
Dossena
,
V.
,
2013
, “
Preliminary Design of a Centrifugal Turbine for Organic Rankine Cycle Applications
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042312
.
3.
Persico
,
G.
,
Pini
,
M.
,
Dossena
,
V.
, and
Gaetani
,
P.
,
2015
, “
Aerodynamics of Centrifugal Turbine Cascades
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
112602
.
4.
Persico
,
G.
,
Romei
,
A.
,
Dossena
,
V.
, and
Gaetani
,
P.
,
2018
, “
Impact of Shape-Optimization on the Unsteady Aerodynamics and Performance of a Centrifugal Turbine for ORC Applications
,”
Energy
,
165
(
A
), pp.
2
11
.
5.
Wilson
,
D. G.
,
1987
, “
New Guidelines for the Preliminary Design and Performance Prediction of Axial-Flow Turbines
,”
Proc. Inst. Mech. Eng., Part A: Power and Proc. Eng.
,
201
(
4
), pp.
279
290
.
6.
Al Jubori
,
A. M.
,
Al-Dadah
,
R. K.
,
Mahmoud
,
S.
, and
Daabo
,
A.
,
2017
, “
Modelling and Parametric Analysis of Small-Scale Axial and Radial-Outflow Turbines for Organic Rankine Cycle Applications
,”
App. Energy
,
190
(
C
), pp.
981
996
.
7.
Bahamonde
,
S.
,
Pini
,
M.
,
De Servi
,
C.
,
Rubino
,
A.
, and
Colonna
,
P.
,
2017
, “
Method for the Preliminary Fluid Dynamic Design of High-Temperature Mini-Organic Rankine Cycle Turbines
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p.
082606
.
8.
Kacker
,
S. C.
, and
Okapuu
,
U.
,
1982
, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
ASME J. Eng. Power
,
104
(
1
), pp.
111
119
.
9.
Aungier
,
R.
,
2006
,
Turbine Aerodynamics: Axial-Flow and Radial-Inflow Turbine Design and Analysis
,
ASME Press
,
New York
.
10.
Traupel
,
W.
,
2019
,
Thermische Turbomaschinen: Band 1: Thermodynamisch-strömungstechnische Berechnung
,
Springer-Verlag
,
Berlin/Heidelberg
.
11.
Coronetta
,
U.
, and
Sciubba
,
E.
,
2020
, “
Optimal Design of a Ljungström Turbine for Orc Power Plants: From a 2D Model to a 3d Cfd Validation
,”
Int. J. Turbomach. Propuls. Power
,
5
(
3
), p.
19
.
12.
Kim
,
J.-S.
, and
Kim
,
D.-Y.
,
2020
, “
Preliminary Design and Off-Design Analysis of a Radial Outflow Turbine for Organic Rankine Cycles
,”
Energies
,
13
(
2118
), p.
8
.
13.
Dixon
,
S. L.
, and
Hall
,
C.
,
2014
,
Fluid Mechanics and Thermodynamics of Turbomachinery
, 7th ed.
Butterworth-Heinemann
,
Oxford
.
14.
Persico
,
G.
,
Pini
,
M.
,
Dossena
,
V.
, and
Gaetani
,
P.
,
2013
, “
Aerodynamic Design and Analysis of Centrifugal Turbine Cascades
”.
Vol. 6C: Turbomachinery of Turbo Expo: Power for Land, Sea, and Air
. ASME Paper No.GT2013-95770.
15.
Craig
,
H. R. M.
, and
Cox
,
H. J. A.
,
1970
, “
Performance Estimation of Axial Flow Turbines
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
407
424
.
16.
Ainley
,
D.
, and
Mathieson
,
G.
,
1957
,
A Method for Performance Estimation for Axial-Flow Turbines
. Technical Report R&M No.2974, ARC.
17.
Dunham
,
J.
, and
Came
,
P. M.
,
1970
, “
Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction
,”
ASME J. Eng. Power
,
92
(
3
), pp.
252
256
.
18.
Cadence/NUMECA
,
2021
,
FINE/Turbo 16.1 Theory Guide
. Brussels.
19.
Walraevens
,
R.
, and
Gallus
,
H.
,
1997
, Test Case 6: 1-1/2 Stage Axial Flow Turbine. Technical Report, ERCOFTAC SIG on 3D Turbomachinery Flow Prediction.
20.
Stern
,
F.
,
Wilson
,
R. V.
,
Coleman
,
H. W.
, and
Paterson
,
E. G.
,
2001
, “
Comprehensive Approach to Verification and Validation of CFD Simulations–Part 1: Methodology and Procedures
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
793
802
.
21.
Brennen
,
C. E.
,
2011
,
Hydrodynamics of Pumps
, 2nd ed.
Cambridge University Press
,
New York
.
22.
Zou
,
Z. P.
,
Wang
,
S. T.
,
Liu
,
H. X.
, and
Zhang
,
W. H.
,
2017
,
Axial Turbine Aerodynamics for Aero-Engines: Flow Analysis and Aerodynamics Design
, 1st ed,
Springer Nature
,
Singapore
.
23.
Brown
,
L. E.
,
1972
, “
Axial Flow Compressor and Turbine Loss Coefficients: A Comparison of Several Parameters
,”
ASME J. Eng. Power
,
94
(
3
), pp.
193
201
.
24.
Hirsch
,
C.
, and
Denton
,
J. D.
,
1981
, Through Flow Calculations in Axial Turbomachines. Technical Report. AGARD-AR-175, Propulsion and Energetics Panel Working Group 12.
25.
Sieverding
,
C. H.
,
1985
, “
Axial Turbine Performance Prediction Methods
,”
NATO ASI Series E, Thermodynamics and Fluid Mechanics of Turbomachinery
,
1
(
97A
), pp.
737
784
.
26.
Liu
,
Y. M.
,
Hendrick
,
P.
,
Zou
,
Z. P.
, and
Buysschaert
,
F.
,
2021
, “
A Revision of the Ainley & Mathieson Loss Correlation
,”
AIAA Propulsion and Energy 2021
,
Virtual Event
,
Aug. 9–11
.
27.
Smith
,
S.
,
1965
, “
A Simple Correlation of Turbine Efficiency
,”
J. R. Aeronaut. Soc.
,
69
(
655
), pp.
467
470
.
28.
Moustapha
,
S. H.
,
Kacker
,
S. C.
, and
Tremblay
,
B.
,
1990
, “
An Improved Incidence Losses Prediction Method for Turbine Airfoils
,”
ASME J. Turbomach.
,
112
(
2
), pp.
267
276
.
29.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
1997
, “
Influence of Leading-Edge Geometry on Profile Losses in Turbines At Off-Design Incidence: Experimental Results and An Improved Correlation
,”
ASME J. Turbomach.
,
119
(
2
), pp.
193
200
.
30.
Zhu
,
J.
, and
Sjolander
,
S. A.
,
2005
, “
Improved Profile Loss and Deviation Correlations for Axial-Turbine Blade Rows
”. Vol. Volume
6
:
Turbo Expo 2005, Parts A and B of Turbo Expo: Power for Land, Sea, and Air
, pp.
783
792
. ASME Paper No.GT2005-69077.
31.
Lewis
,
R. I.
,
1996
,
Turbomachinery Performance Analysis
,
Butterworth-Heinemann
,
Oxford
.
32.
Tournier
,
J.-M.
, and
El-Genk
,
M. S.
,
2010
, “
Axial Flow, Multi-Stage Turbine and Compressor Models
,”
Energy Convers. Manag.
,
51
(
1
), pp.
16
29
.
33.
Lozza
,
G.
,
1982
, “
A Comparison Between the Craig-Cox and the Kacker-Okapuu Methods of Turbine Performance Prediction
,”
Meccanica
,
17
(
4
), pp.
211
221
.
34.
Walsh
,
J. A.
, and
Gregory-Smith
,
D. G.
,
1990
, “
Inlet Skew and the Growth of Secondary Losses and Vorticity in a Turbine Cascade
,”
ASME J. Turbomach.
,
112
(
4
), pp.
633
642
.
35.
Japikse
,
D.
,
2009
, “
Turbomachinery Performance Modeling
.”
SAE World Congress & Exhibition
. SAE Technical Paper 2009-01-0307.
36.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
”. Vol.
7
:
Turbomachinery, Parts A, B, and C of Turbo Expo: Power for Land, Sea, and Air
, pp.
735
745
. ASME Paper No.GT2010-22540.
37.
Oberkampf
,
W. L.
, and
Blottner
,
F. G.
,
1998
, “
Issues in Computational Fluid Dynamics Code Verification and Validation
,”
AIAA J.
,
36
(
5
), pp.
687
695
.
38.
Hirsch
,
C.
,
2007
,
Fundamentals of Computational Fluid Dynamics
(
Numerical Computation of Internal and External Flows
,
2 ed., Vol. 1
),
Butterworth-Heinemann
,
Oxford
.
39.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
40.
Baker
,
T. J.
,
2005
, “
Mesh Generation: Art Or Science?
Prog. Aerosp. Sci.
,
41
(
1
), pp.
29
63
.
41.
Turgut
,
O. H.
, and
Camci
,
C.
,
2016
, “
Factors Influencing Computational Predictability of Aerodynamic Losses in a Turbine Nozzle Guide Vane Flow
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051103
.
42.
Aubé
,
M.
, and
Hirsch
,
C.
,
2001
, “
Numerical Investigation of a 1-1/2 Axial Turbine Stage at Quasi-Steady and Fully Unsteady Conditions
”. Vol. Volume
1
:
Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery of Turbo Expo: Power for Land, Sea, and Air
.
43.
Liu
,
Y. M.
,
Hendrick
,
P.
,
Zou
,
Z. P.
, and
Buysschaert
,
F.
,
2020
, “
Statistical and Computational Evaluation of Axial Loss Correlations Applied to Centrifugal Turbines
,”
AIAA Propulsion and Energy 2020 Forum
,
Virtual Event
,
Aug. 24–28
.
44.
Dunham
,
J.
,
1996
, Loss Mechanisms and Unsteady Flows in Turbomachines. Technical Report. AGARD-CP-571, Propulsion and Energetics Panel 85th Symposium.
45.
Mendenhall
,
W.
,
Beaver
,
R. J.
, and
Beaver
,
B. M.
,
2012
,
Introduction to Probability and Statistics
,
Cengage Learning
,
Boston, MA
.
46.
Timko
,
L. P.
,
1984
, Energy Efficient Engine High Pressure Turbine Component Test Performance Report, Technical Report. NASA-CR-168289, General Electric Company.
47.
Cherry
,
D.
,
Gay
,
C.
, and
Lenahan
,
D.
,
1984
, Energy Efficient Engine Low Pressure Turbine Test Hardware Detailed Design Report, Technical Report, NASA-CR-167956, General Electric Company.
48.
Greitzer
,
E. M.
,
Graf
,
M. B.
,
Tan
,
C. S.
, and
Ebrary
,
I.
,
2007
,
Internal Flow: Concepts and Applications
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.