Abstract

The harsh environment exiting modern gas turbine combustion chamber is characterized by vorticity and temperature perturbations, the latter commonly referred as entropy waves. The interaction of these unsteadiness with the first turbine stage causes non-negligible effects on the aerodynamic performance, blade cooling, and noise production. The first of these drawbacks is addressed in this paper by means of an experimental campaign: entropy waves and swirl profile are injected upstream of an axial turbine stage through a novel combustor simulator. Two injection positions and different inlet conditions are considered. Steady and unsteady experimental measurements are carried out through the stage to address the combustor-turbine interaction characterizing the injected disturbance, the nozzle, and rotor outlet aerothermal field. The experimental outcomes show a severe reduction of the temperature perturbation already at stator outlet. The generated swirl profile influences significantly the aerodynamic, as it interacts with the stator and rotor secondary flows and wakes. Furthermore, the clocking position changes the region most affected by the disturbance, showing a potential modifying the injection position to minimize the entropy wave and swirl profile impact on the stage. Finally, this work shows that in order to proficiently study entropy waves, the unsteady aerodynamic flow field stator downstream has to be addressed.

References

1.
Gundy-Burlet
,
K. L.
, and
Dorney
,
D. J.
,
1997
, “
Influence of 3D Hot Streaks on Turbine Heat Transfer
,”
Proceedings of the ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
Orlando, FL
, American Society of Mechanical Engineers.
2.
Jacobi
,
S.
,
Mazzoni
,
C.
,
Rosic
,
B.
, and
Chana
,
K.
,
2017
, “
Investigation of Unsteady Flow Phenomena in First Vane Caused by Combustor Flow With Swirl
,”
ASME J. Turbomach.
,
139
(
4
), p.
041006
.
3.
Morgans
,
A. S.
, and
Duran
,
I.
,
2016
, “
Entropy Noise: A Review of Theory, Progress and Challenges
,”
Int. J. Spray and Combustion Dyn.
,
8
(
4
), pp.
285
298
.
4.
Dowling
,
A. P.
, and
Mahmoudi
,
Y.
,
2015
, “
Combustion Noise
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
65
100
.
5.
Munk
,
M.
, and
Prim
,
R.
,
1947
, “
On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern
,”
Proc. Natl. Acad. Sci. U. S. A.
,
33
(
5
), pp.
137
141
.
6.
Hawthorne
,
W.
,
1974
,
Secondary Vorticity in Stratified Compressible Fluids in Rotating Systems
,
Addison-Wesley
,
Reading, MA
.
7.
Sharma
,
O. P.
,
Pickett
,
G. F.
, and
Ni
,
R. H.
,
1992
, “
Assessment of Unsteady Flows in Turbines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
79
90
.
8.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of An Inlet Temperature Distortion in An Axial Flow Turbine Stage
,”
J. Propul. Power.
,
5
(
1
), pp.
64
71
.
9.
Saxer
,
A. P.
, and
Giles
,
M. B.
,
1994
, “
Predictions of Three-Dimensional Steady and Unsteady Inviscid Transonic Stator/Rotor Interaction With Inlet Radial Temperature Nonuniformity
,”
ASME J. Turbomach.
,
116
(
3
), pp.
347
357
.
10.
Gaetani
,
P.
, and
Persico
,
G.
,
2017
, “
Hot Streak Evolution in An Axial HP Turbine Stage
,”
Int. J. Turbomach. Propul. Power
,
2
(
2
), p.
6
.
11.
Gaetani
,
P.
,
Persico
,
G.
,
Pinelli
,
L.
,
Marconcini
,
M.
, and
Pacciani
,
R.
,
2020
, “
Computational and Experimental Study of Hot Streak Transport Within the First Stage of a Gas Turbine
,”
ASME J. Turbomach.
,
142
(
8
), p.
081002
.
12.
Dorney
,
D. J.
, and
Sondak
,
D. L.
,
2000
, “
Effects of Tip Clearance on Hot Streak Migration in a High-Subsonic Single-Stage Turbine
,”
ASME J. Turbomach.
,
122
(
4
), pp.
613
620
.
13.
An
,
B.-T.
,
Liu
,
J.-J.
, and
Jiang
,
H.-D.
,
2009
, “
Numerical Investigation on Unsteady Effects of Hot Streak on Flow and Heat Transfer in a Turbine Stage
,”
ASME J. Turbomach.
,
131
(
3
), p.
031015
.
14.
Ong
,
J.
, and
Miller
,
R. J.
,
2012
, “
Hot Streak and Vane Coolant Migration in a Downstream Rotor
,”
ASME J. Turbomach.
,
134
(
5
), p.
051002
.
15.
Beard
,
P. F.
,
Smith
,
A. D.
, and
Povey
,
T.
,
2013
, “
Effect of Combustor Swirl on Transonic High Pressure Turbine Efficiency
,”
ASME J. Turbomach.
,
136
(
1
), p.
011002
.
16.
Pinelli
,
L.
,
Marconcini
,
M.
,
Pacciani
,
R.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2021
, “
Computational and Experimental Study of the Unsteady Convection of Entropy Waves Within a High Pressure Turbine Stage
,”
ASME J. Turbomach.
,
143
(
9
), p.
091011
.
17.
Gaetani
,
P.
, and
Persico
,
G.
,
2019
, “
Transport of Entropy Waves Within a High Pressure Turbine Stage
,”
ASME J. Turbomach.
,
141
(
3
), p.
031006
.
18.
Koupper
,
C.
,
Bonneau
,
G.
,
Gicquel
,
L.
, and
Duchaine
,
F.
,
2016
, “
Large Eddy Simulations of the Combustor Turbine Interface: Study of the Potential and Clocking Effects
,”
Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Volume 5B: Heat Transfer
,
Seoul, South Korea
.
19.
Beard
,
P. F.
,
Smith
,
A.
, and
Povey
,
T.
,
2012
, “
Impact of Severe Temperature Distortion on Turbine Efficiency
,”
ASME J. Turbomach.
,
135
(
1
), p.
011018
.
20.
Adams
,
M. G.
,
Beard
,
P. F.
,
Stokes
,
M. R.
,
Wallin
,
F.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2021
, “
Effects of a Combined Hot-Streak and Swirl Profile on Cooled 1.5-stage Turbine Aerodynamics: An Experimental and Computational Study
,”
ASME J. Turbomach.
,
143
(
2
), p.
021011
.
21.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2013
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
135
(
4
), p.
041005
.
22.
Rahim
,
A.
, and
He
,
L.
,
2015
, “
Rotor Blade Heat Transfer of High Pressure Turbine Stage Under Inlet Hot-Streak and Swirl
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062601
.
23.
Gaetani
,
P.
,
Persico
,
G.
, and
Spinelli
,
A.
,
2017
, “
Coupled Effect of Expansion Ratio and Blade Loading on the Aerodynamics of a High-Pressure Gas Turbine.
,”
Appl. Sci.
,
7
(
3
), p.
259
.
24.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2020
, “
Design and Commissioning of a Combustor Simulator Combining Swirl and Entropy Wave Generation
,”
Int. J. Turbomach., Propul. Power
,
5
(
4
), p.
27
.
25.
Notaristefano
,
A.
,
Gaetani
,
P.
,
Dossena
,
V.
, and
Fusetti
,
A.
,
2021
, “
Uncertainty Evaluation on Multi-Hole Aerodynamic Pressure Probes
,”
ASME J. Turbomach.
,
143
(
9
), p.
091001
.
26.
Andreini
,
A.
,
Bacci
,
T.
,
Insinna
,
M.
,
Mazzei
,
L.
, and
Salvadori
,
S.
,
2016
, “
Hybrid RANS-LES Modeling of the Aerothermal Field in An Annular Hot Streak Generator for the Study of Combustor–Turbine Interaction
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021508
.
27.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2021
, “
Transport of Swirling Entropy Waves Through An Axial Turbine Stator
,”
14th European Conference on Turbomachinery Fluid dynamics and Thermodynamics, ETC14
,
Gdansk, Poland
,
Apr. 12–16
.
28.
Gaetani
,
P.
,
Persico
,
G.
,
Dossena
,
V.
, and
Osnaghi
,
C.
,
2006
, “
Investigation of the Flow Field in a High-Pressure Turbine Stage for Two Stator-Rotor Axial Gaps–Part II: Unsteady Flow Field
,”
ASME J. Turbomach.
,
129
(
3
), pp.
580
590
.
You do not currently have access to this content.