Abstract

Turbochargers are a vital component for aiding engine manufacturers in meeting the latest emissions standards. However, their range of operation is limited for low mass flows by compressor surge. Operation in surge results in pressure and mass flow oscillations that are often damaging to the compressor and its installation. Since surge is a highly complex flow regime, full unsteady three-dimensional models are generally too computationally expensive to run. The majority of current low-dimensional surge models use a cubic compressor characteristic that needs to be fitted to experimental data. Therefore, each time a compressor is studied using these models, costly experimental testing is required. In this paper, a new technique for obtaining an axisymmetric centrifugal compressor characteristic is presented. This characteristic is built using the equations of mass, momentum, and energy from first principles in order to provide a more complete model than those currently obtained via experimental data. This approach enables us to explain the resulting cubic-like shape of the characteristic and hence to identify impeller inlet stall as a route into surge. The characteristic is used within a quasi-steady, map-based surge model in order to demonstrate its ability to predict the onset of surge while only providing geometric data as input. Validation is provided for this model by a discussion of the qualitative flow dynamics and a good fit to experimental data, especially for low impeller speeds and pressure ratios.

References

1.
Rasmussen
,
P. C.
, and
Kurz
,
R.
,
2009
, “
Centrifugal Compressor Applications—Upstream and Midstream
,”
Proceedings of the 38th Turbomachinery Symposium
,
Texas A&M University
.
2.
Macdougal
,
I.
, and
Elder
,
R. L.
,
1983
, “
Simulation of Centrifugal Compressor Transient Performance for Process Plant Applications
,”
J. Eng. Power
,
105
(
4
), pp.
885
890
. 10.1115/1.3227497
3.
Stone
,
R.
,
2012
,
Introduction to Internal Combustion Engines
, 4th ed.,
Palgrave MacMillan
,
Hampshire, UK
.
4.
Watson
,
N.
, and
Janota
,
M. S.
,
1982
,
Turbocharging: The Internal Combustion Engine
,
MacMillan
,
London
.
5.
Pampreen
,
R. C.
,
1993
,
Compressor Surge and Stall
,
Concepts Eti
,
Norwich, VT
.
6.
Fink
,
D. A.
,
Cumpsty
,
N. A.
, and
Greitzer
,
E. M.
,
1992
, “
Surge Dynamics in a Free-Spool Centrifugal Compressor System
,”
ASME J. Turbomach.
,
114
(
2
), pp.
321
332
. 10.1115/1.2929146
7.
De Jager
,
B.
,
1995
, “
Rotating Stall and Surge Control: A Survey
,”
Proceedings of the 34th IEEE Conference on Decision and Control
,
New Orleans, LA
, Vol.
2
, pp.
1857
1862
.
8.
Longley
,
J. P.
,
1994
, “
A Review of Nonsteady Flow Models for Compressor Stability
,”
ASME J. Turbomach.
,
116
(
2
), pp.
202
215
. 10.1115/1.2928354
9.
Stenning
,
A. H.
,
1980
, “
Rotating Stall and Surge
,”
J. Fluid. Eng.
,
102
(
1
), pp.
14
20
. 10.1115/1.3240618
10.
Linfield
,
K. W.
, and
Mudry
,
R. G.
,
2008
,
Pros and Cons of CFD and Physical Flow Modeling
,
Airflow Sciences Corporation
,
Livonia, MI
.
11.
Cozzi
,
L.
,
Rubechini
,
F.
,
Marconcini
,
M.
,
Arnone
,
A.
,
Astrua
,
P.
,
Schneider
,
A.
, and
Silingardi
,
A.
,
2017
, “
Facing the Challenges in CFD Modelling of Multistage Axial Compressors
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
.
12.
Arnulfi
,
G. L.
,
Giannattasio
,
P.
,
Giusto
,
C.
,
Massardo
,
A. F.
,
Micheli
,
D.
, and
Pinamonti
,
P.
,
1999
, “
Multistage Centrifugal Compressor Surge Analysis: Part II—Numerical Simulation and Dynamic Control Parameters Evaluation
,”
ASME J. Turbomach.
,
121
(
2
), pp.
312
320
. 10.1115/1.2841316
13.
Van Helvoirt
,
J.
,
de Jager
,
B.
,
Steinbuch
,
M.
, and
Smeulers
,
J.
,
2004
, “
Stability Parameter Identification for a Centrifugal Compression System
,”
43rd IEEE Conference on Decision and Control
,
Paradise Islands, The Bahamas
, Vol.
4
, pp.
3400
3405
.
14.
Mizuki
,
S.
,
Asaga
,
Y.
,
Ono
,
Y.
, and
Tsujita
,
H.
,
2006
, “
Investigation of Surge Behavior in a Micro Centrifugal Compressor
,”
J. Therm. Sci.
,
15
(
2
), pp.
97
102
. 10.1007/s11630-006-0097-4
15.
Tamaki
,
H.
,
2008
, “
Effect of Piping Systems on Surge in Centrifugal Compressors
,”
J. Mech. Sci. Technol.
,
2
(
10
), pp.
1857
1863
. 10.1007/s12206-008-0723-z
16.
Galindo
,
J.
,
Arnau
,
F. J.
,
Tiseira
,
A.
, and
Piqueras
,
P.
,
2010
, “
Solution of the Turbocompressor Boundary Condition for One-Dimensional Gas-Dynamic Codes
,”
Math. Comput. Modell.
,
52
(
7–8
), pp.
1288
1297
. 10.1016/j.mcm.2010.05.003
17.
Torregrosa
,
A.
,
Arnau
,
F.
,
Piqueras
,
P.
,
Reyes-Belmonte
,
M.
,
Knutsson
,
M.
, and
Lennblad
,
J.
,
2012
, “
Acoustic One-Dimensional Compressor Model for Integration in a Gas-Dynamic Code
,”
SAE 2012 World Congress & Exhibition
,
Detroit, MI
.
18.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
J. Eng. Power
,
98
(
2
), pp.
190
198
. 10.1115/1.3446138
19.
Hos
,
C.
,
Champneys
,
A.
, and
Kullmann
,
L.
,
2003
, “
Bifurcation Analysis of Surge and Rotating Stall in the Moore-Greitzer Compression System
,”
IMA J. Appl. Math.
,
68
(
2
), pp.
205
228
. 10.1093/imamat/68.2.205
20.
Koff
,
S. G.
, and
Greitzer
,
E. M.
,
1984
, “
Stalled Flow Performance for Axial Compressors: I—Axisymmetric Characteristic
,”
29th International Gas Turbine Conference and Exhibit
,
Amsterdam, Netherlands
.
21.
Galindo
,
J.
,
Serrano
,
J. R.
,
Climent
,
H.
, and
Tiseira
,
A.
,
2008
, “
Experiments and Modelling of Surge in Small Centrifugal Compressor for Automotive Engines
,”
Exp. Therm. Fluid. Sci.
,
32
(
3
), pp.
818
826
. 10.1016/j.expthermflusci.2007.10.001
22.
Moore
,
F. K.
, and
Greitzer
,
E. M.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part I—Development of Equations
,”
ASME J. Eng. Gas Turb. Power
,
108
(
1
), pp.
68
76
. 10.1115/1.3239887
23.
Zagorowska
,
M.
, and
Thornhill
,
N. F.
,
2017
, “
Compressor Map Approximation Using Chebyshev Polynomials
,”
25th Mediterranean Conference on Control and Automation (MED)
,
Valletta, Malta
, pp.
846
869
.
24.
Li
,
X.
,
Yang
,
C.
,
Wang
,
Y.
, and
Wang
,
H.
,
2018
, “
A Prediction Model of Compressor With Variable-Geometry Diffuser Based on Elliptic Equation and Partial Least Squares
,”
R. Soc. Open Sci.
,
5
(
1
), pp.
1
19
. 10.1098/rsos.171468
25.
Elder
,
R. L.
, and
Gill
,
M. E.
,
1985
, “
A Discussion of the Factors Affecting Surge in Centrifugal Compressors
,”
ASME J. Eng. Gas Turb. Power
,
107
(
2
), pp.
499
506
. 10.1115/1.3239759
26.
Martin
,
G.
,
Talon
,
V.
,
Higelin
,
P.
,
Charlet
,
A.
, and
Caillol
,
C.
,
2009
, “
Implementing Turbomachinery Physics Into Data Map-Based Turbocharger Models
,”
SAE Int. J. Engines
,
2
(
1
), pp.
211
229
. 10.4271/2009-01-0310
27.
Japikse
,
D.
,
1996
,
Centrifugal Compressor Design and Performance
, Vol.
2
,
Concepts Eti
,
White River Junction, VT
.
28.
Velasquez
,
E. I. G.
,
2017
, “
Determination of a Suitable Set of Loss Models for Centrifugal Compressor Performance Prediction
,”
Chinese J. Aeronaut.
,
30
(
5
), pp.
1644
1650
. 10.1016/j.cja.2017.08.002
29.
Oh
,
H. W.
,
Yoon
,
E. S.
, and
Chung
,
M. K.
,
1997
, “
“An Optimum Set of Loss Models for Performance Prediction of Centrifugal Compressors
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
211
(
4
), pp.
331
338
. 10.1243/0957650971537231
30.
Gong
,
X.
, and
Chen
,
R.
,
2014
, “
Total Pressure Loss Mechanism of Centrifugal Compressors
,”
Mech. Eng. Res.
,
4
(
2
), pp.
45
59
. 10.3901/JME.2014.21.045
31.
Burr
,
K. P.
,
Akylas
,
T. R.
, and
Mei
,
C. C.
,
2003
,
Chapter 2: Two-Dimensional Laminar Boundary Layers
,
Lecture Notes
,
MIT
,
Cambridge, MA
.
32.
Winterbone
,
D. E.
, and
Pearson
,
R. J.
,
2000
,
Theory of Engine Manifold Design: Wave Action Methods for I.C. Engines
,
Professional Engineering Publishing
,
London, UK
.
33.
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Cumpsty
,
N. A.
,
1978
, “
Prediction of Compressor Performance in Rotating Stall
,”
J. Eng. Power
,
100
(
1
), pp.
1
12
. 10.1115/1.3446318
You do not currently have access to this content.