Abstract

In this paper, the impact of manufacturing variations on performance of an axial compressor rotor is evaluated at design rotational speed. The geometric variations from the design intent obtained from measurements were used to evaluate the impact of manufacturing variations on performance and the flow field in the rotor. The complete blisk is simulated using 3D computational fluid dynamics calculations, allowing for a detailed analysis of the impact of geometric variations on the flow. It is shown that the mean shift of the geometry from the design intent is responsible for the majority of the change in performance in terms of mass flow and total pressure ratio for this specific blisk. In terms of polytropic efficiency, the measured geometric scatter is shown to have a higher influence than the geometric mean deviation. The geometric scatter around the mean is shown to impact the pressure along the leading edge and the shock position. Furthermore, a blisk is analyzed with one blade deviating substantially from the design intent. It is shown that the impact of this blade on the flow is largely limited to the blade passages that it is directly a part of. It is also shown that the impact of this blade on the flow field can be represented by a simulation including three blade passages. In terms of loss, using five blade passages is shown to give a close estimate for the relative change in loss for the blade deviating substantially from the design intent and for the neighboring blades.

References

1.
Garzon
,
V. E.
, and
Darmofal
,
D. L.
,
2003
, “
Impact of Geometric Variability on Axial Compressor Performance
,”
ASME J. Turbomach.
,
125
(
4
), pp.
692
703
. 10.1115/1.1622715
2.
Goodhand
,
M. N.
,
Miller
,
R. J.
, and
Lung
,
H. W.
,
2015
, “
The Impact of Geometric Variation on Compressor Two-Dimensional Incidence Range
,”
ASME J. Turbomach.
,
137
(
2
), p.
021007
. 10.1115/1.4028355
3.
Dow
,
E. A.
, and
Wang
,
Q.
,
2015
, “
The Implications of Tolerance Optimization on Compressor Blade Design
,”
ASME J. Turbomach.
,
137
(
10
), p.
101008
. 10.1115/1.4030791
4.
Suder
,
K. K.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
,
1994
, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor
,”
ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition
,
ASME
Paper No. 94-GT-339
. 10.1115/94-gt-339
5.
Schnell
,
R.
,
Lengyel-Kampmann
,
T.
, and
Nicke
,
E.
,
2014
, “
On the Impact of Geometric Variability on Fan Aerodynamic Performance, Unsteady Blade Row Interaction, and Its Mechanical Characteristics
,”
ASME J. Turbomach.
,
139
(
9
), p.
091005
. 10.1115/1.4027218
6.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gummer
,
V.
,
2012
, “
Impact of Manufacturing Variability and Nonaxisymmetry on High-Pressure Compressor Stage Performance
,”
ASME J. Turbomach.
,
134
(
3
), p.
032504
. 10.1115/1.4004404
7.
Kane
,
V. E.
,
1989
, “
Process Capability Indices
,”
J. Qual. Technol.
,
18
(
1
), pp.
41
52
. 10.1080/00224065.1986.11978984
8.
Mårtensson
,
H.
,
Edin
,
N.
, and
Johansson
,
T.
,
2013
, “
Performance Test and Analysis of the Highly Loaded 1.5 Stage Transonic Test Compressor HULDA
,”
Proceedings of ISABE 2013
,
ISABE-2013-1127
.
9.
Ellbrant
,
L.
,
Eriksson
,
L.-E.
, and
Mårtensson
,
H.
,
2014
, “
Predictive Capability of CFD Models for Transonic Compressor Design
,”
Proceedings of ASME Turbo Expo 2014
,
ASME
Paper No. GT2014-27019
. 10.1115/gt2014-27019
10.
Adams
,
C.
,
Gupta
,
P.
, and
Wilson
,
C.
,
2003
,
Six Sigma Deployment
, 1st ed.,
Butterworth-Heinemann
,
Amsterdam
.
11.
Miller
,
E.
,
Day
,
W.
,
Patel
,
H.
, and
Taylor
,
J.
,
2013
, “
Unflared Compressor Blade
,”
Dec. 3
. US Patent No. 8,596,986.
12.
Chima
,
R.
,
1998
, “
Calculation of Tip Clearance Effects in a Transonic Compressor Rotor
,”
ASME J. Turbomach.
,
120
(
1
), pp.
131
140
. 10.1115/1.2841374
13.
Lejon
,
M.
,
Andersson
,
N.
,
Grönstedt
,
T.
,
Mårtensson
,
H.
, and
Ellbrant
,
L.
,
2017
, “
On Improving the Surge Margin of a Tip-Critical Axial Compressor Rotor
,”
Proceedings of ASME Turbo Expo 2017
,
ASME
Paper No. GT2017-64533
. 10.1115/gt2017-64533
14.
Yang
,
H.
, and
He
,
L.
,
2004
, “
Experimental Study on Linear Compressor Cascade With Three-Dimensional Blade Oscillation
,”
J. Propul. Power
,
20
(
1
), pp.
180
188
. 10.2514/1.1280
You do not currently have access to this content.