A combined experimental and computational test program, with two low-pressure ratio aero-engine fans, has been used to identify the flow mechanisms at stall inception and the subsequent stall cell growth. The two fans have the same rotor tip clearance, annulus design, and downstream stators, but different levels of tip loading. The measurement data show that both the fans stall via spike-type inception, but that the growth of the stall cell and the final cell size is different in each fan. The computations, reproducing both the qualitative and quantitative behavior of the steady-state and transient measurements, are used to identify the flow mechanisms at the origin of stall inception. In one fan, spillage of tip leakage flow upstream of the leading edge plane is responsible. In the other, sudden growth of casing corner separation blockage leads to stall. These two mechanisms are in accord with the findings from core compressors. However, the transonic aerodynamics and the low hub-to-tip radius ratio of the fans lead to the following two findings: first, the casing corner separation is driven by shock-boundary layer interaction and second, the spanwise loading distribution of the fan determines whether the spike develops into full-span or part-span stall and both types of behavior are represented in the present work. Finally, the axial momentum flux of the tip clearance flow is shown to be a useful indicator of the leakage jet spillage mechanism. A simple model is provided that links the tip loading, stagger, and solidity with the tip clearance axial momentum flux, thereby allowing the aerodynamicist to connect, qualitatively, design parameters with the stall behavior of the fan.

References

1.
Camp
,
T.
, and
Day
,
I.
,
1998
, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
120
, pp.
393
401
.
2.
Garnier
,
V.
,
Epstein
,
A.
, and
Greitzer
,
E.
,
1991
, “
Rotating Waves as a Stall Inception Indication in Axial Compressors
,”
ASME J. Turbomach.
,
113
, pp.
290
302
.
3.
Tan
,
C.
,
Day
,
I.
,
Morris
,
S.
, and
Wadia
,
A.
,
2010
, “
Spike-Type Compressor Stall Inception, Detection and Control
,”
Ann. Rev. Fluid Mech.
,
42
, pp.
275
300
.
4.
Pullan
,
G.
,
Young
,
A.
,
Day
,
I.
,
Greitzer
,
E.
, and
Spakovszky
,
Z.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
5.
Hewkin-Smith
,
M.
,
Pullan
,
G.
,
Grimshaw
,
S.
,
Greitzer
,
E.
, and
Spakovszky
,
Z.
,
2017
, “
The Role of Tip Leakage Flow in Spike-Type Rotating Stall Inception
,”
ASME IGTI Turbo Expo, GT2017-63655
,
Charlotte, NC
.
6.
Strazisar
,
A.
,
1985
, “
Investigation of Flow Phenomena in a Transonic Fan Rotor Using Laser Anemometry
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
427
435
.
7.
Copenhaver
,
W.
,
Puterbaugh
,
S.
, and
Hah
,
C.
,
1997
, “
Unsteady Flow and Shock Motion in a Transonic Compressor Rotor
,”
AIAA J. Propulsion Power
,
13
(
1
), pp.
17
23
.
8.
Adamczyk
,
J.
,
Celestina
,
M.
, and
Greitzer
,
E.
,
1993
, “
The Role of Tip Clearance in High-speed Fan Stall
,”
ASME J. Turbomach.
,
115
, pp.
28
38
.
9.
Hah
,
C.
,
Bergner
,
J.
, and
Schiffer
,
H.
,
2006
, “
Short Length Scale Rotating Stall Inception in a Transonic Axial Compressor: Criteria and mechanisms
,”
ASME IGTI Turbo Expo, GT2006-90045
,
Barcelona, Spain
.
10.
Choi
,
M.
,
Smith
,
N.
, and
Vahdati
,
M.
,
2012
, “
Validation of Numerical Simulation for Rotating Stall in a Transonic Fan
,”
ASME J. Turbomach.
,
135
(
2
),
021004
.
11.
Korsia
,
J.
,
2009
, “
Vital European Research and Development Programme For Greener Aero-engines
,”
ISABE 2009-1114
,
Montreal, Canada
.
12.
Gunn
,
E.
, and
Hall
,
C.
,
2014
, “
Aerodynamics of Boundary Layer Ingesting Fans
,”
ASME IGTI Turbo Expo, GT2014-26142
,
Düsseldorf, Germany
.
13.
Lee
,
K.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2017
, “
Validation of a Numerical Model for Predicting Stalled Flows in a Low-Speed Fan
,”
ASME IGTI Turbo Expo, GT2017-63245
,
Charlotte, NC
.
14.
Brandvik
,
T.
, and
Pullan
,
G.
,
2011
, “
An Accelerated 3D Navier–Stokes Solver for Flows in Turbomachines
,”
ASME J. Turbomach.
,
133
,
021025
.
15.
Liu
,
Y.
,
Lu
,
L.
,
Fang
,
L.
, and
Gao
,
F.
,
2011
, “
Modification of Spalart-Allmaras Model with Consideration of Tubulence Energy Backscatter Using Velocity Helicity
,”
Phys. Lett. A
,
375
(
24
), pp.
2377
2381
.
16.
Vahdati
,
M.
,
Sayma
,
A.
,
Freeman
,
C.
, and
Imregun
,
M.
,
2005
, “
On the Use of Atmospheric Boundary Conditions for Axial-Flow Compressor Stall Simulations
,”
ASME J. Turbomach.
,
127
, pp.
349
351
.
17.
Emmons
,
H.
,
Pearson
,
C.
, and
Grant
,
H.
,
1955
, “
Compressor Surge and Stall Propagation
,”
Trans. ASME
,
79
, pp.
455
469
.
You do not currently have access to this content.