In this paper, we describe the structures that produce a spike-type route to rotating stall and explain the physical mechanism for their formation. The descriptions and explanations are based on numerical simulations, complemented and corroborated by experiments. It is found that spikes are caused by a separation at the leading edge due to high incidence. The separation gives rise to shedding of vorticity from the leading edge and the consequent formation of vortices that span between the suction surface and the casing. As seen in the rotor frame of reference, near the casing the vortex convects toward the pressure surface of the adjacent blade. The approach of the vortex to the adjacent blade triggers a separation on that blade so the structure propagates. The above sequence of events constitutes a spike. The computed structure of the spike is shown to be consistent with rotor leading edge pressure measurements from the casing of several compressors: the centre of the vortex is responsible for a pressure drop and the partially blocked passages associated with leading edge separations produce a pressure rise. The simulations show leading edge separation and shed vortices over a range of tip clearances including zero. The implication, in accord with recent experimental findings, is that they are not part of the tip clearance vortex. Although the computations always show high incidence to be the cause of the spike, the conditions that give rise to this incidence (e.g., blockage from a corner separation or the tip leakage jet from the adjacent blade) do depend on the details of the compressor.

References

1.
Camp
,
T.
, and
Day
,
I.
,
1998
, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
120
(
3
), pp.
393
401
.10.1115/1.2841730
2.
Garnier
,
V.
,
Epstein
,
A.
, and
Greitzer
,
E.
,
1991
, “
Rotating Waves as a Stall Inception Indication in Axial Compressors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
290
301
.10.1115/1.2929105
3.
Lin
,
F.
,
Chen
,
J.
, and
Meilin
,
L.
,
2004
, “
Wavelet Analysis of Rotor-Tip Disturbances in an Axial-Flow Compressor
,”
AIAA J. Propul. Power
,
20
(
2
), pp.
319
334
.10.2514/1.9257
4.
Deppe
,
A.
,
Saathoff
,
H.
, and
Stark
,
U.
,
2005
, “
Spike-Type Stall Inception in Axial-Flow Compressors
,”
6th European Conference on Turbomachinery
, Lille, France, Mar. 7–11, pp.
178
188
.
5.
Weichert
,
S.
, and
Day
,
I.
,
2014
, “
Detailed Measurements of Spike Formation in an Axial Compressor
,”
ASME J. Turbomach.
,
136
(
5
), p.
051006
.10.1115/1.4025166
6.
Brand
,
M.
,
Kottapalli
,
A.
, and
Spakovszky
,
Z.
,
2011
,
The Dependence of Spike-Type Stall Inception on Blade-Tip Leakage Flow in Axial Compressors
,” 16.62X Final Report, Experimental Projects Course, Department of Aeronautics and Astonautics, MIT, Cambridge, MA.
7.
Spakovszky
,
Z.
, and
Roduner
,
C.
,
2009
, “
Spike and Modal Stall Inception in an Advanced Turbocharger Centrifugal Compressor
,”
ASME J. Turbomach.
,
131
(
3
), p.
031012
.10.1115/1.2988166
8.
Everitt
,
J.
, and
Spakovszky
,
Z.
,
2011
, “
An Investigation of Stall Inception in Centrifugal Compressor Vaned Diffusers
,”
ASME
Paper No. GT2011-46332.10.1115/GT2011-46332
9.
Vo
,
H.
,
Tan
,
C.
, and
Greitzer
,
E.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.10.1115/1.2750674
10.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
, and
Furukawa
,
M.
,
2000
, “
Propagation of Multiple Short-Length-Scale Stall Cells in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
122
(
1
), pp.
45
54
.10.1115/1.555426
11.
Brandvik
,
T.
, and
Pullan
,
G.
,
2011
, “
An Accelerated 3D Navier–Stokes Solver for Flows in Turbomachines
,”
ASME J. Turbomach.
,
133
(
2
), p.
021025
.10.1115/1.4001192
12.
Pullan
,
G.
,
Denton
,
J.
, and
Curtis
,
E.
,
2006
, “
Improving the Performance of a Turbine With Low Aspect Ratio Stators by Aft-Loading
,”
ASME J. Turbomach.
,
128
(
3
), pp.
492
499
.10.1115/1.2182000
13.
Wisler
,
D. C.
,
1977
, “
Core Compressor Exit Stage Study: Vol. 1—Blading Design
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA CR-135391.
14.
Emmons
,
H.
,
Pearson
,
C.
, and
Grant
,
H.
,
1955
, “
Compressor Surge and Stall Propagation
,”
Trans. ASME
,
79
(
4
), pp.
455
469
.
15.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.10.1017/S0022112095000462
16.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
,
Yoshida
,
S.
, and
Furukawa
,
M.
,
2001
, “
Comparative Studies on Short and Long Length-Scale Stall Cell Propagating in Axial Compressor Rotor
,”
ASME J. Turbomach.
,
123
(
1
), pp.
24
30
.10.1115/1.1326085
17.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Yoshida
,
S.
, and
Furukawa
,
M.
,
2002
, “
Short and Long Length-Scale Disturbances Leading to Rotating Stall in an Axial Compressor Stage With Different Stator/Rotor Gaps
,”
ASME J. Turbomach.
,
124
(
3
), pp.
376
384
.10.1115/1.1458022
18.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Yoshida
,
S.
,
Minami
,
T.
,
Yamada
,
K.
, and
Furukawa
,
M.
,
2004
, “
Effect of Tip Clearance on Stall Evolution Process in a Low-Speed Axial Compressor Stage
,”
ASME
Paper No. GT2004-53354.10.1115/GT2004-53354
19.
Yamada
,
K.
,
Kikuta
,
H.
,
Iwakiri
,
K.
,
Furukawa
,
M.
, and
Gunjishima
,
S.
,
2013
, “
An Explanation for Flow Features of Spike-Type Stall Inception in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021023
.10.1115/1.4007570
20.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2001
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
,
123
(
3
), pp.
453
460
.10.1115/1.1370160
21.
März
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
(
3
), p.
375
.10.1115/1.1460917
22.
Young
,
A.
,
Day
,
I.
, and
Pullan
,
G.
,
2012
, “
Stall Warning by Blade Pressure Signature Analysis
,”
ASME J. Turbomach.
,
135
(1), p. 011033.10.1115/1.4006426
23.
Rosic
,
B.
,
Denton
,
J.
, and
Pullan
,
G.
,
2006
, “
The Importance of Shroud Leakage Modeling in Multistage Turbine Flow Calculations
,”
ASME J. Turbomach.
,
128
(
4
), pp.
699
707
.10.1115/1.2181999
24.
Vahdati
,
M.
,
Sayma
,
A.
,
Freeman
,
C.
, and
Imregun
,
M.
,
2005
, “
On the Use of Atmospheric Boundary Conditions for Axial-Flow Compressor Stall Simulations
,”
ASME J. Turbomach.
,
127
(
2
), pp.
349
351
.10.1115/1.1861912
You do not currently have access to this content.