Recent interest has been shown in using synthetic gaseous (syngas) fuels to power gas turbine engines. An important issue concerning these fuels is the potential for increased contaminant deposition that can inhibit cooling designs and expedite the material degradation of vital turbine components. The purpose of this study was to provide a detailed understanding of how contaminants deposit on the surface of a turbine vane with a thermal barrier coating (TBC). The vane model used in this study was designed to match the thermal behavior of real engine components by properly scaling the convective heat transfer coefficients as well as the thermal conductivity of the vane wall. Four different film cooling configurations were studied: round holes, craters, a trench, and a modified trench. The contaminants used in this study were small particles of paraffin wax that were sprayed into the mainstream flow of the wind tunnel. The wax particles modeled both the molten nature of contaminants in an engine as well as the particle trajectory by properly matching the expected range of Stokes number. This study found that the presence of film cooling significantly increased the accumulation of deposits. It was also found that the deposition behavior was strongly affected by the film cooling configuration that was used on the pressure side of the vane. The craters and trench performed the best in mitigating the accumulation of deposits immediately downstream of the film cooling configuration. In general, the presence of deposits reduced the film cooling performance on the surface of the TBC. However, the additional thermal insulation provided by the deposits improved the cooling performance at the interface of the TBC and vane wall.

References

1.
Hamed
,
A.
,
Tabakoff
,
W.
, and
Wenglarz
,
R.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
350
360
.10.2514/1.18462
2.
Crosby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2008
, “
Effects of Temperature and Particle Size on Deposition in Land Based Turbines
,”
ASME J. Eng. Gas Turb. Power
,
130
(5), p. 051503.10.1115/1.2903901
3.
Ai
,
W.
,
Laylock
,
R. G.
,
Rappleye
,
D. S.
,
Fletcher
,
T. H.
, and
Bons
,
J.P.
,
2009
, “
Effect of Particle Size and Trench Configuration on Deposition From Fine Coal Flyash Near Film Cooling Holes
,”
ASME
Paper No. GT2009-59571.10.1115/GT2009-59571
4.
Albert
,
J. E.
,
Keefe
,
K. J.
, and
Bogard
,
D. G.
,
2012
Experimental Simulation of Contaminant Deposition on a Film Cooled Turbine Airfoil Leading Edge
,”
ASME J. Turbomach.
,
134
(
5
), p. 051014.10.1115/1.4003964
5.
Lawson
,
S. A.
, and
Thole
,
K. A.
,
2012
, “
Simulations of Multiphase Particle Deposition on Endwall Film-Cooling Holes in Transverse Trenches
,”
ASME J. Turbomach.
,
134
(
5
), p. 051041.10.1115/1.4004756
6.
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2011
, “
Experimental Simulation of Contaminant Deposition on a Film Cooled Turbine Vane Pressure Side With a Trench
,”
ASME
Paper No. GT2011-46709.10.1115/GT2011-46709
7.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
, pp.
249
270
.10.2514/1.18034
8.
Dees
,
J. E.
,
Ledezma
,
G. A.
,
Bogard
,
D. G.
,
Laskowski
,
G. M.
, and
Tolpadi
,
A. K.
,
2012
, “
Experimental Measurements and Computational Predictions for an Internally Cooled Simulated Turbine Vane
,”
ASME J. Turbomach.
,
134
(
6
), p. 061003.10.1115/1.4006280
9.
Davidson
,
F. T.
,
Kistenmacher
,
D. A.
, and
Bogard
,
D. G.
,
2012
, “
Film Cooling With a Thermal Barrier Coating: Round Holes, Craters, and Trenches
,” ASME Turbo Expo, Cophenhagen, Denmark, ASME Paper No. GT2012-70029.
10.
Albert
,
J. E.
2011
, “
Experimental Simulation and Mitigation of Contaminant Deposition on Film Cooled Gas Turbine Airfoils
,” Ph.D. dissertation, University of Texas at Austin, Austin, TX, pp. 45.
11.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D.G.
,
2000
, “
Effects of Showerhead Cooling on Turbine Vane Suction Side Film Cooling Effectiveness
,”
ASME IMECE Conference
,
Orlando, FL
, November 5–10.
12.
Davidson
,
F. T.
,
2012
, “
An Experimental Study of Film Cooling, Thermal Barrier Coatings and Contaminant Deposition on an Internally Cooled Turbine Airfoil Model
,” Ph.D. dissertation, University of Texas at Austin, Austin, TX, pp. 12, 62, 89, 214.
13.
Shih
,
T.
,
Chi
,
K.
,
Ramachandran
,
P.
,
Ames
,
R.
, and
Dennis
,
R.
,
2010
, “
The Role of the Biot Number in Turbine-Cooling Design and Analysis
,” 2010 University Turbine Systems Research (UTSR) Workshop, State College, PA, October 19–21.
14.
Bunker
,
R. S.
,
2009
, “
The Effects of Manufacturing Tolerances on Gas Turbine Cooling
”,
ASME J. Turbomach.
,
131
(
4
), p. 041018.10.1115/1.3072494
15.
Feuerstein
,
A.
, Knapp, J., Taylor, T., Ashary, A., Bolcavage, A., and Hitchman, N.,
2008
, “
Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review
,”
J. Thermal Spray Tech.
,
17
(
2
), pp.
199
213
.10.1007/s11666-007-9148-y
16.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E. H.
,
2002
, “
Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
296
, pp.
280
284
.10.1126/science.1068609
17.
Soechting
,
F. O.
,
1999
, “
A Design Perspective on Thermal Barrier Coatings
,”
J. Thermal Spray Tech.
,
8
(
4
), pp.
505
511
.10.1361/105996399770350179
18.
Special Metals Corporation
,
2004
, “
Inconel® Alloy X-750 Data Sheet
,” Publication No. SMC-067, Sept. 2004, www.specialmetals.com
19.
Maikell
,
J.
,
Bogard
,
D.
,
Piggush
,
J.
, and
Kohli
,
A.
,
2010
, “
Experimental Simulation of a Film Cooled Turbine Blade Leading Edge Including Thermal Barrier Coating Effects
,”
ASME J. Turbomach.
,
133
(
1
), p. 011014.10.1115/1.4000537
20.
Rigney
,
D. V.
,
Viguie
,
R.
,
Wortman
,
D. J.
, and
Skelly
,
D. W.
,
1997
, “
PVD Thermal Barrier Coating Applications and Process Development for Aircraft Engines
,”
J. Thermal Spray Tech.
,
6
(
2
), pp.
167
175
.10.1007/s11666-997-0008-6
21.
Hinds
,
W. C.
,
1999
,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
, 2nd ed.,
Wiley-Interscience
,
New York
.
22.
Bons
,
J. P.
,
Crosby
,
J.
,
Wammack
,
J. E.
,
Bentley
,
B. I.
, and
Fletcher
,
T. H.
,
2007
, “
High Pressure Turbine Deposition in Land-Based Gas Turbines From Various Synfuels
,”
ASME J. Eng. Gas Turb. Power
,
129
, pp.
135
143
.10.1115/1.2181181
23.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
24.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
J. Thermal Fluid Sci.
,
1
, pp.
3
17
.10.1016/0894-1777(88)90043-X
25.
Davidson
,
F. T.
,
Dees
,
J. E.
, and
Bogard
,
D. G.
,
2011
, “
An Experimental Study of Thermal Barrier Coatings and Film Cooling on an Internally Cooled Simulated Turbine Vane
,” ASME Turbo Expo, Vancouver, Canada, June 6–10,
ASME
Paper No. GT2011-46604.10.1115/GT2011-46604
26.
Dees
,
J. E.
,
Bogard
,
D. G.
,
Ledezma
,
G. A.
,
Laskowski
,
G. M.
, and
Tolpadi
,
A.K.
,
2010
, “
Experimental Measurements and Computational Predictions for an Internally Cooled Simulated Turbine Vane With 90 Degree Rib Turbulators
,”
ASME J. Turbomach.
134
(
6
), p. 061005.10.1115/1.4006282
27.
Lewis
,
S.
,
Barker
,
B.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2010
, “
Film Cooling Effectiveness and Heat Transfer Near Deposit-Laden Film Holes
”,
ASME J. Turbomach.
,
133
(
3
), p. 031003.10.1115/1.4001190
You do not currently have access to this content.