Stagnation region heat transfer measurements have been acquired on two large cylindrical leading edge test surfaces having a four to one range in leading edge diameter. Heat transfer measurements have been acquired for six turbulence conditions including three grid conditions, two aero-combustor conditions, and a low turbulence condition. The data have been run over an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 110% in the stagnation region for the large leading edge. However, the heat transfer results for the large cylindrical leading edge do not appear to infer a significant level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL parameter. These results indicate that the intensification of approaching turbulence is more prevalent with the more rapid straining of the smaller leading edge. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs in these regions providing a useful set of data to ground the prediction of transition onset and length over a wide range of Reynolds numbers and turbulence intensity and scales.

References

1.
Zapp
,
G. M.
,
1950
, “
The Effect of Turbulence on Local Heat Transfer Coefficients Around a Cylinder Normal to an Air Stream
,”
M.S. thesis
,
Oregon State College
,
Corvallis, OR
.
2.
Smith
,
M. C.
, and
Kuethe
,
A. M.
,
1966
, “
Effects of Turbulence on Laminar Skin Friction and Heat Transfer
,”
Phys. Fluids
,
9
(
12
),
pp.
2337
2344
.10.1063/1.1761623
3.
Kestin
,
J.
, and
Wood
,
R. T.
,
1971
, “
The Influence of Turbulence on Mass Transfer From Cylinders
,”
J. Heat Transfer
,
93
,
pp.
321
327
.10.1115/1.3449823
4.
Lowery
,
G. W.
, and
Vachon
,
R. I.
,
1975
, “
The Effect of Turbulence on Heat Transfer From Heated Cylinders
,”
Int. J. Heat Mass Transfer
,
18
,
pp.
1229
1242
.10.1016/0017-9310(75)90231-8
5.
Mehendale
,
A. B.
,
Han
,
J. C.
, and
Ou
,
S.
,
1991
, “
Influence of High Mainstream Turbulence on Leading Edge Heat Transfer
,”
ASME J. Heat Transfer
,
113
,
pp.
843
850
.10.1115/1.2911212
6.
Hunt
,
J. C. R.
,
1973
, “
A Theory of Turbulent Flow Round Two-Dimensional Bluff Bodies
,”
J. Fluid Mech.
,
61
(
4
),
pp.
625
706
.10.1017/S0022112073000893
7.
Britter
,
R. E.
,
Hunt
,
J. C. R.
, and
Mumford
,
J. C.
,
1979
, “
The Distortion of Turbulence by a Circular Cylinder
,”
J. Fluid Mech.
,
92
,
pp.
269
301
.10.1017/S0022112079000628
8.
Rigby
,
D. L.
, and
Van Fossen
,
G. J.
,
1991
, “
Increased Heat Transfer to a Cylindrical Leading Edge Due to Spanwise Variations in the Freestream Velocity
,”
AIAA 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference
,
Honolulu, Hawaii
,
Paper No. AIAA-91-1739
.
9.
Kestin
,
J.
,
1966
, “
The Effect of Free-Stream Turbulence on Heat Transfer Rate
,”
Advances in Heat Transfer
, 3rd ed.,
T. F.
Irvine
and
J. P.
Harnett
, eds.,
Academic Press
,
London
.
10.
Ames
,
F. E.
, and
Moffat
,
R. J.
,
1990
, “
Heat Transfer With High Intensity, Large Scale Turbulence: The Flat Plate Turbulent Boundary Layer and the Cylindrical Stagnation Point
,”
Ph.D. dissertation
,
Stanford University
,
Stanford, CA
.
11.
Ames
,
F. E.
,
1997
, “
The Influence of Large Scale, High Intensity Turbulence on Vane Heat Transfer
,”
ASME J. Turbomach.
,
119
,
pp.
23
30
.10.1115/1.2841007
12.
Ames
,
F. E.
,
Wang
,
C.
, and
Barbot
,
P. A.
,
2003
, “
Measurement and Prediction of the Influence of Catalytic and Dry Low NOx Combustor Turbulence on Vane Surface Heat Transfer
,”
ASME J. Turbomach.
,
125
,
pp.
210
220
.10.1115/1.1559897
13.
Ames
,
F. E.
,
Argenziano
,
M.
, and
Wang
,
C.
,
2004
, “
Measurement and Prediction of Heat Transfer Distributions on an Aft Loaded Vane Subjected to the Influence of Catalytic and Dry Low NOx Combustor Turbulence
,”
ASME J. Turbomach.
,
126
,
pp.
139
149
.10.1115/1.1645867
14.
Ames
,
F. E.
,
Dvorak
,
L. A.
, and
Morrow
,
M. J.
,
2005
, “
Turbulent Augmentation of Internal Convection off Pins in Staggered Pin Fin Arrays
,”
ASME J. Turbomach.
,
127
,
pp.
183
190
.10.1115/1.1811090
15.
Van Fossen
,
G. J.
,
Simoneau
,
R. J.
, and
Ching
,
C. Y.
,
1995
, “
Influence of Turbulence Parameters, Reynolds Number, and Body Shape on Stagnation Region Heat Transfer
,”
ASME J. Heat Transfer
,
117
,
pp.
597
603
.10.1115/1.2822619
16.
Van Fossen
,
G. J.
, and
Bunker
,
R. S.
,
2001
, “
Augmentation of Stagnation Region Heat Transfer Due to Turbulence From a DLN Can Combustor
,”
ASME J. Turbomach.
,
123
,
pp.
140
146
.10.1115/1.1330270
17.
Dullenkopf
,
K.
, and
Mayle
,
R. E.
,
1995
, “
An Account of Free-Stream Turbulence Length Scale on Laminar Heat Transfer
,”
ASME J. Turbomach.
,
117
,
pp.
401
406
.10.1115/1.2835675
18.
Oo
,
A. N.
, and
Ching
,
C. Y.
,
2002
, “
Stagnation Line Heat Transfer Augmentation due to Freestream Vortical Structures and Vorticity
,”
ASME J. Heat Transfer
,
124
,
pp.
583
587
.10.1115/1.1471526
19.
Nix
,
A. C.
,
Diller
,
T. E.
, and
Ng
,
W. F.
,
2007
, “
Experimental Measurements and Modeling of the Effects of Large-Scale Freestream Turbulence on Heat Transfer
,”
ASME J. Turbomach.
,
129
,
pp.
542
550
.10.1115/1.2515555
20.
Nix
,
A. C.
, and
Diller
,
T. E.
,
2005
, “
Experiments on the Physical Mechanism of Heat Transfer Augmentation by Freestream Turbulence at a Cylinder Stagnation Point
,”
Paper No. GT-2005-68616
.
21.
Gifford
,
A. R.
,
Diller
,
T. E.
, and
Vlachos
,
P. P.
,
2011
, “
The Physical Mechanism of Heat Transfer Augmentation in Stagnation Flow Subject to Freestream Turbulence
,”
ASME J. Heat Transfer
,
133
, p.
021901
.10.1115/1.4002595
22.
Bae
,
S.
,
Lele
,
S. K.
, and
Sung
,
H. G.
,
2002
, “
The Influence of Inflow Disturbances on Stagnation Region Heat Transfer
,”
ASME J. Heat Transfer
,
122
,
pp.
258
265
.10.1115/1.521486
23.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2005
,
Convective Heat and Mass Transfer
, 4th ed.,
McGraw-Hill
,
New York
.
24.
Zukauskas
,
A.
, and
Ziugzda
,
J.
,
1985
,
Heat Transfer of a Cylinder in Crossflow
,
Hemisphere Publishing Corporation
,
New York
.
25.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
,
pp.
3
17
.10.1016/0894-1777(88)90043-X
26.
Radomsky
,
R.
, and
Thole
,
K. A.
,
2002
, “
Detailed Boundary Layer Measurements on a Turbine Stator Vane at Elevated Freestream Turbulence Levels
,”
Int. J. Heat Fluid Flow
,
23
(
2
),
pp.
137
147
.10.1016/S0142-727X(01)00145-X
27.
Radomsky
,
R.
, and
Thole
,
K. A.
,
2000
, “
Highly Turbulent Flowfield Measurements Around a Stator Vane
,”
ASME J. Turbomach.
,
122
,
pp.
255
262
.10.1115/1.555442
You do not currently have access to this content.