A computational fluid dynamic (CFD) investigation is presented that provides predictions of the aerodynamic impact of uniform and nonuniform coatings applied to the leading edge of a compressor airfoil in a cascade. Using a NACA 65(12)10 airfoil, coating profiles of varying leading edge nonuniformity were added. A nonuniform coating is obtained when a liquid coating is applied to a surface with high curvature, such as an airfoil leading edge. The CFD code used, RVCQ3D, is a Reynolds averaged Navier–Stokes solver, with a k-omega turbulence model. The code predicted that these changes in leading edge shape can lead to alternating pressure gradients in the first few percent of chord that create small separation bubbles and possibly early transition to turbulence. The change in total pressure loss and trailing edge deviation are presented as a function of a coating nonuniformity parameter. Results are presented over a range of negative and positive incidences and inlet Mach numbers from 0.6 to 0.8. A map is provided that shows the allowable degree of coating nonuniformity as a function of incidence and inlet Mach number.

1.
Caguiat
,
D. E.
, 2003, “
Rolls Royce/Allison 501-K Gas Turbine Antifouling Compressor Coatings Evaluation
,”
ASME J. Turbomach.
0889-504X,
125
(
3
), pp.
482
488
.
2.
Schwartz
,
L. W.
, 2003, personal communication, Nov. 28.
3.
Schwartz
,
L. W.
, and
Weidner
,
D. E.
, 1995 “
Modeling of Coating Flows on Curved Surfaces
,”
J. Eng. Math.
0022-0833,
29
(
1
), pp.
91
103
.
4.
Eley
,
R. R.
, and
Schwartz
,
L. W.
, 2002, “
Interaction of Rheology, Geometry, and Process in Coating Flow
,”
J. Coat. Technol.
0361-8773,
74
, pp.
43
53
.
5.
Reid
,
L.
, and
Urasek
,
D. C.
, 1973, “
Experimental Evaluation of the Effects of a Blunt Leading Edge on the Performance of a Transonic Rotor
,”
ASME J. Eng. Power
0022-0825,
95
, pp.
199
204
.
6.
Roberts
,
W. B.
, 1984, “
Axial Compressor Performance Restoration by Blade Profile Control
,” ASME Paper No. 84-GT-232.
7.
Roberts
,
W. B.
, 1995, “
Advanced Turbofan Blade Refurbishment Technique
,”
ASME J. Turbomach.
0889-504X,
117
(
4
), pp.
666
667
.
8.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
, 1995, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
0889-504X,
117
(
4
), pp.
491
505
.
9.
Kwon
,
O. J.
, and
Sankar
,
L. N.
, 1997, “
Numerical Simulation of the Flow About a Swept Wing With Leading Edge Ice Accretions
,”
Comput. Fluids
0045-7930,
26
(
2
), pp.
183
192
.
10.
Khalid
,
M.
,
Zhang
,
S.
, and
Chen
,
S.
, 2002, “
A Study of Aerodynamic Performance Degradation on Aerofoils and Aircraft Wings Due to Accreted Ice
,”
Aeronaut. J.
0001-9240,
106
, pp.
9
15
.
11.
Huebsch
,
W. W.
, and
Rothmayer
,
A. P.
, 2002, “
Effects of Ice Roughness on Dynamic Stall
,”
J. Aircr.
0021-8669,
39
(
6
), pp.
945
953
.
12.
Tuck
,
E. O.
, 1991, “
A Criterion for Leading Edge Separation
,”
J. Fluid Mech.
0022-1120,
222
, pp.
33
37
.
13.
Walraevens
,
R. E.
, and
Cumpsty
,
N. A.
, 1995, “
Leading-Edge Separation Bubbles on Turbomachine Blades
,”
ASME J. Turbomach.
0889-504X,
117
(
1
), pp.
115
125
.
14.
Tain
,
L.
, 1998, “
Compressor Leading Edges in Incompressible and Compressible Flows
,” Ph.D. dissertation, Cambridge University.
15.
Huoxing
,
L.
,
Baojie
,
L.
,
Ling
,
L.
, and
Haokang
,
J.
, 2003, “
Effect of Leading-Edge Geometry on Separation Bubble on a Compressor Blade
,” ASME Paper No. GT2003-38217.
16.
Gostelow
,
J. P.
, and
Walker
,
G. J.
, 1991, “
Similarity Behavior in Transitional Boundary Layers Over a Range of Adverse Pressure Gradients and Turbulence Levels
,”
ASME J. Turbomach.
0889-504X,
113
(
4
), pp.
617
625
.
17.
Gostelow
,
J. P.
,
Blunden
,
A. R.
, and
Walker
,
G. J.
, 1994, “
Effects of Free-Stream Turbulence and Adverse Pressure Gradients on Boundary Layer Transition
,”
ASME J. Turbomach.
0889-504X,
116
(
3
), pp.
392
404
.
18.
Gostelow
,
J. P.
, 1984,
Cascade Aerodynamics
,
Pergamon
,
Oxford, England
, pp.
238
241
.
19.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
(
4
), pp.
509
537
.
20.
Walker
,
G. J.
, 1993, “
The Role of Laminar Turbulent Transition in Gas Turbine Engines: A Discussion
,”
ASME J. Turbomach.
0889-504X,
115
(
2
), pp.
207
217
.
21.
Malkiel
,
E.
, and
Mayle
,
R. E.
, 1996, “
Transition in a Separation Bubble
,”
ASME J. Turbomach.
0889-504X,
118
(
4
), pp.
752
759
.
22.
Solomon
,
W. J.
,
Walker
,
G. J.
, and
Gostelow
,
J. P.
, 1996, “
Transition Length Prediction for Flows With Rapidly Changing Pressure Gradients
,”
ASME J. Turbomach.
0889-504X,
118
(
4
), pp.
744
751
.
23.
Solomon
,
W. J.
,
Walker
,
G. J.
, and
Hughes
,
J. D.
, 1999, “
Periodic Transition on an Axial Compressor Stator: Incidence and Clocking Effect: Part II—Transition Onset Predictions
,”
ASME J. Turbomach.
0889-504X,
121
(
3
), pp.
408
415
.
24.
Johnson
,
M. W.
, 2002, “
Predicting Transition Without Empiricism or DNS
,”
ASME J. Turbomach.
0889-504X,
124
(
4
), pp.
665
669
.
25.
Drela
,
M.
, and
Giles
,
M. B.
, 1987, “
Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils
,”
AIAA J.
0001-1452,
25
(
10
), pp.
1347
1355
.
26.
Sanz
,
W.
, and
Platzer
,
M. F.
, 1998, “
On the Navier-Stokes Calculation of Separation Bubbles With a New Transition Model
,”
ASME J. Turbomach.
0889-504X,
120
(
1
), pp.
36
42
.
27.
Tain
,
L.
, and
Cumpsty
,
N. A.
, 2000, “
Compressor Blade Leading Edges in Subsonic Compressible Flow
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
214
, pp.
221
242
.
28.
Hobson
,
G. V.
, and
Weber
,
S.
, 2000, “
Prediction of Laminar Separation Bubble Over a Controlled Diffusion Compressor Blade
,” ASME Paper No. 2000-GT-277.
29.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries
,
La Canada, CA
.
30.
Elmstrom
,
M. E.
, 2004, “
Numerical Prediction of the Impact of Non-Uniform Leading Edge Coatings on the Aerodynamics Performance of Compressor Airfoils
,” MS thesis, Naval Postgraduate School, Monterey, CA.
31.
Chima
,
R. V.
, 1997, “
GRAPE 2-D Grid Generator for Turbomachinery: User’s Manual and Documentation
,” Version 104.
32.
Chima
,
R. V.
, 1987, “
Explicit Multigrid Algorithm for Quasi-Three-Dimensional Viscous Flows in Turbomachinery
,”
J. Propul. Power
0748-4658,
3
(
5
), pp.
397
405
.
33.
Chima
,
R. V.
,
Turkel
,
E.
, and
Schaffer
,
S.
, 1987, “
Comparison of Three Explicit Multigrid Methods for the Euler and Navier Stokes Equations
,”
NASA
Report No. TM-88878.
34.
Chima
,
R. V.
, 1999, “
RVCQ3D—Rotor Viscous Code Quasi-3-D: User’s Manual and Documentation
,” Version 303.
35.
Cumpsty
,
N. A.
, 1989,
Compressor Aerodynamics
,
Longman Scientific and Technical
,
Melbourne, FL
, p.
162
.
36.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
(
8
), pp.
1598
1605
.
37.
Lieblein
,
S.
, 1965, “
Experimental Flow in Two-Dimensional Cascades
,”
Aerodynamic Design of Axial Flow Compressors: NASA SP-36
, revised, p.
190
.
You do not currently have access to this content.