Gas turbine blades are usually cooled by using ribbed serpentine internal cooling passages, which are fed by extracted compressor air. The individual straight ducts are connected by sharp 180 deg bends. The integration of turning vanes in the bend region lets one expect a significant reduction in pressure loss while keeping the heat transfer levels high. Therefore, the objective of the present study was to investigate the influence of different turning vane configurations on pressure loss and local heat transfer distribution. The investigations were conducted in a rectangular two-pass channel connected by a 180 deg sharp turn with a channel height-to-width ratio of H/W=2. The channel was equipped with 45 deg skewed ribs in a parallel arrangement with e/dh=0.1 and P/e=10. The tip-to-web distance was kept constant at Wel/W=1. Spatially resolved heat transfer distributions were obtained using the transient thermochromic liquid crystal technique. Furthermore static pressure measurements were conducted in order to determine the influence of turning vane configurations on pressure loss. Additionally, the configurations were investigated numerically by solving the Reynolds-averaged Navier–Stokes equations using the finite-volume solver FLUENT. The numerical grids were generated by the hybrid grid generator CENTAUR. Three different turbulence models were considered: the realizable k-ε model with two-layer wall treatment, the k-ω-SST model, and the v2-f turbulence model. The results showed a significant influence of the turning vane configuration on pressure loss and heat transfer in the bend region and the outlet pass. While using an appropriate turning vane configuration, pressure loss was reduced by about 25%, keeping the heat transfer at nearly the same level in the bend region. An inappropriate configuration led to an increase in pressure loss while the heat transfer was reduced in the bend region and outlet pass.

1.
Han
,
J. -C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Technology
,
Taylor & Francis
,
New York
.
2.
Weigand
,
B.
,
Semmler
,
K.
, and
von Wolfersdorf
,
J.
, 2001, “
Heat Transfer Technology for Internal Passages of Air-Cooled Blades for Heavy-Duty Gas Turbines
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
179
193
.
3.
Han
,
J. -C.
, 2002, “
Recent Studies in Turbine Blade Cooling
,”
Proceedings of the Ninth International Symposium on Transport Phenomena and Dynamics in Rotating Machinery (ISROMAC-9)
, Honolulu, HI, Feb. 10–14.
4.
Iacovides
,
H.
, and
Launder
,
B. E.
, 2006, “
Internal Blade Cooling: The Cinderella of C&EFD Research in Gas Turbines
,”
Proceedings of the 13th International Heat Transfer Conference
, Sydney, Australia, Aug. 13–18.
5.
Han
,
J. -C.
,
Park
,
J. S.
, and
Lei
,
C. K.
, 1985, “
Heat Transfer Enhancement in Channels With Turbulence Promotors
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
628
635
.
6.
Taslim
,
M. E.
, and
Lengkong
,
A.
, 1998, “
45 Deg Staggered Rib Heat Transfer Coefficient Measurements in a Square Channel
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
571
580
.
7.
Wright
,
L. M.
,
Fu
,
W.
, and
Han
,
J. -C.
, 2004, “
Thermal Performance of Angled, V-Shaped, and W-Shaped Rib Turbulators in Rotating Rectangular Channels (AR=4:1)
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
604
614
.
8.
Ekkad
,
S. V.
, and
Han
,
J. -C.
, 1997, “
Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
11
), pp.
2525
2537
.
9.
Chanteloup
,
D.
,
Juaneda
,
Y.
, and
Bölcs
,
A.
, 2002, “
Combined 3-D Flow and Heat Transfer Measurements in a 2-Pass Internal Coolant Passage of Gas Turbine Airfoils
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
710
718
.
10.
Iacovides
,
H.
,
Jackson
,
D. C.
,
Kelemenis
,
G.
,
Launder
,
B. E.
, and
Yuan
,
Y. -M.
, 2001, “
Flow and Heat Transfer in a Rotating U-Bend With 45° Ribs
,”
Int. J. Heat Fluid Flow
0142-727X,
22
, pp.
308
314
.
11.
Rathjen
,
L.
,
Hennecke
,
D. K.
,
Sivade
,
C.
, and
Semmler
,
K.
, 2002, “
Detailed Experimental and Numerical Heat/Mass Transfer Investigations in a Rotating Two-Pass Coolant Channel With Staggered 45° Ribs
,”
Proceedings of the Ninth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-9)
, Honolulu, HI, Feb. 10–14.
12.
Al-Hadhrami
,
L.
, and
Han
,
J. -C.
, 2003, “
Effect of Rotation on Heat Transfer in Two-Pass Square Channels With Five Different Orientations of 45° Angled Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
653
669
.
13.
Liou
,
T. -M.
, and
Dai
,
G. -Y.
, 2004, “
Pressure and Flow Characteristics in a Rotating Two-Pass Square Duct With 45-Deg Angled Ribs
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
212
219
.
14.
Elfert
,
M.
,
Voges
,
M.
, and
Klinner
,
J.
, 2008, “
Detailed Flow Investigation Using PIV in a Rotating Square-Sectioned Two-Pass Cooling System With Ribbed Walls
,”
ASME
Paper No. GT2008-51183.
15.
Kim
,
K. M.
,
Kim
,
Y. Y.
,
Rhee
,
D. H.
, and
Cho
,
H. H.
, 2004, “
An Investigation of Duct Aspect Ratio Effects on Heat/Mass Transfer in a Rotating Duct With 90° Ribs
,” ASME Paper No. GT2004-53533.
16.
Fu
,
W. -L.
,
Wright
,
L. M.
, and
Han
,
J. -C.
, 2005, “
Heat Transfer in Two-Pass Rotating Rectangular Channels (AR=1:2 and AR=1:4) With 45 Deg Angled Rib Turbulators
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
164
174
.
17.
Jenkins
,
S. C.
,
Zehnder
,
F.
,
Shevchuk
,
I. V.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Schnieder
,
M.
, 2008, “
The Effect of Ribs and Tip Wall Distance on Heat Transfer for a Varying Aspect Ratio Two-Pass Ribbed Internal Cooling Channel
,” ASME Paper No. GT2008-51207.
18.
Bonhoff
,
B.
,
Tomm
,
U.
, and
Johnson
,
B. V.
, 1996, “
Heat Transfer Predictions for U-Shaped Coolant Channels With Skewed Ribs and With Smooth Walls
,” ASME Paper No. 96-TA-7.
19.
Bonhoff
,
B.
,
Leusch
,
J.
, and
Johnson
,
B. V.
, 1999, “
Predictions of Flow and Heat Transfer in Sharp 180-deg Turns of Gas Turbine Coolant Channels With and Without Turning Vanes
,”
Proceedings of the 33rd National Heat Transfer Conference
, Albuquerque, NM, Aug. 15–17.
20.
Lin
,
Y. -L.
,
Shih
,
T. I.-P.
,
Stephens
,
M. A.
, and
Chyu
,
M. K.
, 2001, “
A Numerical Study of Flow and Heat Transfer in a Smooth and Ribbed U-Duct With and Without Rotation
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
219
232
.
21.
Su
,
G.
,
Chen
,
H. -C.
,
Han
,
J. -C.
, and
Heidmann
,
J. D.
, 2004, “
Computation of Flow and Heat Transfer in Two-Pass Rotating Rectangular Channels (AR=1:1, AR=1:2, AR=1:4) With 45-Deg Angled Ribs by a Reynolds Stress Turbulence Model
,” ASME Paper No. GT2004-53662.
22.
Murata
,
A.
, and
Mochizuki
,
S.
, 2006, “
Effects of Centrifugal Buoyancy and Reynolds Number on Turbulent Heat Transfer in a Two-Pass Angled-Rib-Roughened Channel With Sharp 180° Turns Investigated by Using Large Eddy Simulation
,”
Proceedings of the 11th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-11)
, Honolulu, HI, Feb. 26—Mar. 2.
23.
Sewall
,
E. A.
, and
Tafti
,
D. K.
, 2005, “
Large Eddy Simulation of Flow and Heat Transfer in the 180° Bend Region of a Stationary Ribbed Gas Turbine Internal Cooling Duct
,” ASME Paper No. GT2005-68518.
24.
Viswanathan
,
A. K.
, and
Tafti
,
D. K.
, 2006, “
Detached Eddy Simulation of Turbulent Flow and Heat Transfer in a Two-Pass Internal Cooling Duct
,”
Int. J. Heat Fluid Flow
0142-727X,
27
, pp.
1
20
.
25.
Walker
,
D.
and
Zausner
,
J.
, 2007, “
RANS Evaluations of Internal Cooling Passage Geometries: Ribbed Passage and a 180 Degree Bend
,” ASME Paper No. GT2007-278.
26.
Lucci
,
J. M.
,
Amano
,
R. S.
, and
Guntur
,
K.
, 2007, “
Turbulent Flow and Heat Transfer in Variable Geometry U-Bend Blade Cooling Passage
,” ASME Paper No. GT2007-27120.
27.
Lucci
,
J. M.
,
Amano
,
R. S.
,
Guntur
,
K.
, and
Song
,
B.
, 2008, “
Numerical Study of the Thermal Development in a Rotating Cooling Passage
,” ASME Paper No. GT2008-50201.
28.
Iacovides
,
H.
,
Kounadis
,
D.
, and
Launder
,
B. E.
, 2006, “
Experimental Study of the Thermal Development in Rotating Squared-Ended U-Bend
,” ASME Paper No. GT2006-90846.
29.
Shevchuk
,
I. V.
,
Jenkins
,
S. C.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
,
Neumann
,
S. O.
, and
Schnieder
,
M.
, 2008, “
Validation and Analysis of Numerical Results for a Varying Aspect Ratio Two-Pass Internal Cooling Channel
,” ASME Paper No. GT2008-51219.
30.
Parneix
,
S.
,
Schnieder
,
M.
, and
von Wolfersdorf
,
J.
, 2003, “
Component of a Flow Machine
,” U.S. Patent No. US 6,595,750 B2.
31.
Parneix
,
S.
,
Schnieder
,
M.
, and
von Wolfersdorf
,
J.
, 2007, “
Turbomachine Component
,” European Patent No. EP 1,223,308 B1.
32.
Schnieder
,
M.
,
Höcker
,
R.
, and
von Wolfersdorf
,
J.
, 2001, “
Heat Transfer and Pressure Loss in a 180-Turn of a Rectangular, Rib-Roughened Two Passage Channel
,”
Proceedings of the Fifth World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics (ExHFT5)
, Thessaloniki, Greece, Sept. 24–28.
33.
Rao
,
D. V. R.
,
Babu
,
C. S.
, and
Prabhu
,
S. V.
, 2004, “
Effect of Turn Region Treatments on the Pressure Loss Distribution in a Smooth Square Channel With Sharp 180° Bend
,”
Int. J. Rotating Mach.
1023-621X,
10
(
6
), pp.
459
468
.
34.
Luo
,
J.
and
Razinsky
,
E. H.
, 2007, “
Analysis of Turbulent Flow in 180° Turning Ducts With and Without Guide Vanes
,” ASME Paper No. GT2007-28173.
35.
Pape
,
D.
,
Jenkins
,
S. C.
,
von Wolfersdorf
,
J.
, and
Weigand
,
B.
, 2006, ”
The Influence of Including Partially Smooth Section in the 2nd Leg of an Internally Ribbed Two Pass Cooling Channel
,” ASME Paper No. GT2006-90802.
36.
Wang
,
Z.
,
Gillespie
,
D.
, and
Ireland
,
P. T.
, 1996, “
Advances in Heat Transfer Measurements Using Liquid Crystals
,”
Proceedings of the Turbulent Heat Transfer Conference
, San Diego, CA, Mar. 10–15.
37.
Ireland
,
P. T.
,
Neely
,
A. J.
,
Gillespie
,
D. R. H.
, and
Robertson
,
A. J.
, 1999, “
Turbulent Heat Transfer Measurements Using Liquid Crystals
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
355
367
.
38.
Techo
,
R.
,
Tickner
,
R. R.
, and
James
,
R. E.
, 1965, “
An Accurate Equation for the Computation of the Friction Factor for Smooth Pipes From the Reynolds-Number
,”
ASME J. Appl. Mech.
0021-8936,
32
, p.
443
.
39.
Jenkins
,
S. C.
,
Shevchuk
,
I. V.
,
von Wolfersdorf
,
J.
, and
Weigand
,
B.
, 2007, “
Transient Thermal Field Measurements in a High Aspect Ratio Channel Related to Transient Thermochromic Liquid Crystal Experiments
,” ASME Paper No. GT2007-27812.
40.
Ekkad
,
S. V.
, and
Han
,
J. -C.
, 2000, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
957
968
.
41.
Ireland
,
P. T.
, and
Jones
,
T. V.
, 2000, “
Liquid Crystal Measurement of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
969
986
.
42.
Pape
,
D.
, and
Weigand
,
B.
, 2004, “
The Influence of Repeated Transient Heat Transfer Tests on the Measurement Accuracy
,”
Proceedings of the Tenth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Mar. 7–11, Paper No. ISROMAC10-2004-074.
43.
Vogel
,
G.
, and
Weigand
,
B.
, 2001, “
A New Evaluation Method for Transient Liquid Crystal Experiments
,” ASME Paper No. NHTC2001-20250.
44.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1959,
Conduction of Heat in Solids
, 2nd ed.,
Oxford
,
New York
.
45.
Poser
,
R.
,
von Wolfersdorf
,
J.
, and
Semmler
,
K.
, 2005, “
Transient Heat Transfer Experiments in Complex Passages
,” ASME Paper No. HT2005-72260.
46.
Poser
,
R.
,
von Wolfersdorf
,
J.
, and
Lutum
,
E.
, 2007, “
Advanced Evaluation of Transient Heat Transfer Experiments Using Thermochromic Liquid Crystals
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
221
, pp.
793
801
.
47.
Gnielinski
,
V.
, 1976, “
New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
0020-6318,
16
(
2
), pp.
359
365
.
48.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
49.
Kallinderis
,
Z.
,
Khawaja
,
A.
, and
McMorris
,
H.
, 1996, “
Hybrid Prismatic/Tetrahedral Grid Generation for Flows Around Complex Geometries
,”
AIAA J.
0001-1452,
34
(
2
), pp.
291
298
.
50.
Fluent Inc.
, 2006, FLUENT 6.3 User’s Guide.
51.
Verein Deutscher Ingenieure (VDI)
, 2002,
VDI-Wärmeatlas
, 9th ed.,
Springer
,
Berlin, Germany
.
You do not currently have access to this content.