In the past 10–15 years, substantial effort has been spent on increasing the airfoil lift especially in aero-engine low pressure turbines. This has been attractive, since increased airfoil lift can be used for airfoil count decrease leading to weight and hardware cost reduction. The challenge with this effort consequently has been to keep the efficiency at high levels. Depending on the baseline level of airfoil lift, an increase of 20–50% has been realized and at least partly incorporated in modern turbine designs. With respect to efficiency there is actually an optimum level of airfoil lift. Airfoil rows at a lift level below this optimum suffer from an excessive number of airfoils with too much wetted surface and especially increasing trailing edge losses. Airfoils at lift levels above this optimum suffer from growing losses due to high peak Mach numbers inside the airfoil row, higher rear diffusion on the airfoil suction sides, and increased secondary flow losses. Since fuel cost have been rising significantly, as has been the awareness of the environmental impact of CO2, it becomes more and more important to design low pressure turbines for an optimal trade between efficiency and weight to achieve the lowest engine fuel burn. This paper summarizes work done recently and in the past to address the main influences and mechanisms of the airfoil lift level, with respect to losses and efficiency as a basis for determination of optimal airfoil lift selection.

1.
Zweifel
,
O.
, 1945, “
Die Frage der optimalen Schaufelteilung bei Beschaufelungen von Turbomaschinen, insbesondere bei großer Umlenkung in den Schaufelreihen
,”
Brown Boveri Rev.
0007-2486,
32
(
12
), pp.
436
444
.
2.
Emmons
,
H. W.
, 1951, “
The Laminar-Turbulent Transition in a Boundary Layer–Part I
,”
J. Aerosp. Sci.
0095-9820,
18
, pp.
490
498
.
3.
Schubauer
,
G. B.
, and
Klebanoff
,
P. S.
, 1955, “
Contributions on the Mechanics of Boundary Layer Transition
,” NACA TN 3489 (1955) and NACA Report No. 1289. (1956).
4.
Walker
,
G. J.
, 1974, “
The Unsteady Nature of Boundary Layer Transition on an Axial-Flow Compressor Blade
,” ASME Paper No. 74-GT-135.
5.
Hodson
,
H. P.
, 1984, “
Boundary Layer and Loss Measurements on the Rotor of an Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
(
2
), pp.
391
399
.
6.
Hodson
,
H. P.
,
Huntsman
,
I.
, and
Steele
,
A. B.
, 1994, “
An Investigation of Boundary Layer Development in a Multistage LP Turbine
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
375
383
.
7.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines—Part 1: Composite Picture
,”
ASME J. Turbomach.
0889-504X,
119
(
1
), pp.
114
127
.
8.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.
, 1995, “
Boundary Layer Development in Axial Compressors and Turbines—Part 2: Compressors
,”
ASME J. Turbomach.
0889-504X,
119
(
3
), pp.
426
444
.
9.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.
, 1995, “
Boundary Layer Development in Axial Compressors and Turbines—Part 3: LP Turbines
,”
ASME J. Turbomach.
0889-504X,
119
(
2
), pp.
225
237
.
10.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines—Part 4: Computations and Analyses
,”
ASME J. Turbomach.
0889-504X,
119
(
1
), pp.
128
139
.
11.
Hoheisel
,
H.
,
Kiock
,
R.
,
Lichtfuss
,
H. J.
, and
Fottner
,
L.
, 1987, “
Influence of Free-Stream Turbulence and Blade Pressure Gradient on Boundary Layer and Loss Behaviour of Turbine Cascades
,”
ASME J. Turbomach.
0889-504X,
109
, pp.
210
219
.
12.
Hourmouziadis
,
J.
, 1989, “
Aerodynamic Design of Low Pressure Turbines
,” ASME Paper No. AGARD-LS-167.
13.
Pfeil
,
H.
,
Herbst
,
R.
, and
Schröder
,
Th.
, 1983, “
Investigation of Laminar-Turbulent Transition of Boundary Layers Disturbed by Wakes
,”
ASME J. Turbomach.
0889-504X,
105
, pp.
130
137
.
14.
Hodson
,
H. P.
, 1990, “
Modelling Unsteady Transition and Its Effects on Profile Loss
,”
ASME J. Turbomach.
0889-504X,
112
(
4
), pp.
691
701
.
15.
Schulte
,
V.
, and
Hodson
,
H. P.
, 1998, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbines
,”
ASME J. Turbomach.
0889-504X,
120
(
1
), pp.
28
35
.
16.
Banieghbal
,
M. R.
,
Curtis
,
E. M.
,
Denton
,
J. D.
,
Hodson
H. P.
,
Huntsman
,
I.
,
Schulte
,
V.
,
Harvey
,
N. W.
, and
Steele
,
A. B.
, 1995, “
Wake Passing in LP Turbines
,”
AGARD Conference on Loss Mechanisms and Unsteady Flows in Turbomachines
, Derby, UK, May, Paper No. 23.
17.
Stadtmüller
,
P.
,
Fiala
,
A.
, and
Fottner
,
L.
, 2000, “
Experimental and Numerical Investigation of Wake-Induced Transition on a Highly Loaded LP Turbine at Low Reynolds Numbers
,” ASME Paper No. 2000-GT-269.
18.
Gier
,
J.
,
Ardey
,
S.
,
Heisler
,
A.
, 2000, “
Analysis of Complex Three-Dimensional Flow in a Three-Stage LPT by Means of Transitional Navier-Stokes Simulation
,” ASME Paper No. 2000-GT-0645.
19.
Gier
,
J.
, and
Ardey
,
S.
, 2001, “
On the Impact of Blade Count Reduction on Aerodynamic Performance and Loss Generation in a Three-Stage LP Turbine
,” ASME Paper No. 2001-GT-0197.
20.
Ardey
,
S.
, and
Gier
,
J.
, 2001, “
Randzonenbeeinflussung bei Schaufelzahlreduktion in Niederdruckturbinen
,” Paper No. DGLR-2001-206.
21.
Haselbach
,
F.
,
Schiffer
,
H. P.
,
Horsmann
,
M.
,
Dressen
,
S.
,
Harvey
,
N. W.
, and
Read
,
S.
, 2002, “
The Application of Ultra High Lift Blading in the BR715 LP Turbine
,”
ASME J. Turbomach.
0889-504X,
124
(
1
), pp.
45
51
.
22.
Howell
,
R. J.
,
Hodson
,
H. P.
,
Schulte
,
V.
,
Stieger
,
R. D.
,
Schiffer
,
H. P.
,
Haselbach
,
F.
, and
Harvey
,
N. W.
, 2002, “
Boundary Layer Development in the BR710 and BR715 LP Turbines–The Implementation of High Lift and Ultra–High–Lift Concepts
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
385
392
.
23.
Houtermans
,
R.
,
Coton
,
T.
, and
Arts
T.
, 2003, “
Aerodynamic Performance of a Very High Lift LP Turbine Blade With Emphasis on Separation Prediction
,” ASME Paper No. GT-2003-38802.
24.
Coton
,
T.
, and
Arts
,
T.
, 2004, “
Investigation of a High Lift LP Turbie Blade Submitted to Passing Wakes—Part 1: Profile Loss and Heat Transfer
,” ASME Paper No. GT2004-53768.
25.
Coton
,
T.
, and
Arts
,
T.
, 2004, “
Investigation of a High Lift LP Turbie Blade Submitted to Passing Wakes—Part 2: Boundary Layer Transition
,” ASME Paper No. GT2004-53781.
26.
Popovic
,
I.
,
Zhu
,
J.
,
Dai
,
W.
,
Sjolander
,
S. A.
,
Praisner
,
T.
, and
Grover
,
E.
, 2006, “
Aerodynamics of a Family of Three Highly Loaded Low-Pressure Turbine Airfoils: Measured Effects of Reynolds Number and Turbulence Intensity in Steady Flow
,” ASME Paper No. GT2006-91271.
27.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Knezevici
,
D. C.
,
Sjolander
,
S. A.
, and
Grover
,
E. A.
, 2007, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,” ASME Paper No. GT2007-27579.
28.
Lazaro
,
B. J.
,
Gonzalez
,
E.
, and
Vazquez
,
R.
, 2007, “
Unsteady Loss Production Mechanisms in Low Reynolds Number, High Lift, Low Pressure Turbine Profiles
,” ASME Paper No. GT2007-28142.
29.
MTU
, 1987, “
Axial durchströmtes Schaufelgitter einer mit Gas oder Dampf betriebenen Turbine
,” European Patent No. EP 0 132 638 B1.
30.
Sitaram
,
N.
,
Govardhan
,
M.
, and
Krishna
,
V. T.
, 1999, “
Loss Reduction by Means of Two-Dimensional Roughness Elements on the Suction Surface of a Linear Turbine Rotor Cascade
,”
Flow, Turbul. Combust.
1386-6184,
62
(
3
), pp.
227
248
.
31.
Volino
,
R. J.
, 2003, “
Passive Flow Control on Low-Pressure Turbine Airfoils
,” ASME Paper No. GT2003-38728.
32.
Ramesh
,
O. N.
,
Hodson
,
H. P.
, and
Harvey
,
N. W.
, 2001, “
Separation Control in Ultra-High Lift Aerofoils by Unsteadiness and Surface Roughness
,”
15th International Symposium on Air Breathing Engines
, Bangalore, India, Sept.
33.
Zhang
,
X. F.
,
Vera
,
M.
,
Hodson
,
H.
, and
Harvey
,
N.
, 2006, “
Separation and Transition Control on an Aft-Loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Numbers: Low-Speed Investigation
,”
ASME J. Turbomach.
0889-504X,
128
(
3
), pp.
517
527
.
34.
Vera
,
M.
,
Zhang
,
X. -F.
,
Hodson
,
H. P.
, and
Harvey
,
N. W.
, 2007, “
Separation and Transition Control on an Aft-Loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Numbers: High-Speed Validation
,”
ASME J. Turbomach.
0889-504X,
129
(
2
), pp.
340
347
.
35.
Bons
,
J.
,
Sondergard
,
R.
, and
Rivir
,
R.
, 2001, “
Control of Low-Pressure Turbine Separation Using Vortex Generator Jets
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
198
206
.
36.
Sondergard
,
R.
,
Bons
,
J.
,
Sucher
,
M.
, and
Rivir
,
B.
: 2002, “
Reducing Low-Pressure Stage Blade Count Using Vortex Jet Separation Control
,” ASME Paper No. GT-2002-30602.
37.
Volino
,
R. J.
, 2003, “
Separation Control on Low-Pressure Turbine Airfoils Using Synthetic Vortex Generator Jets
,” ASME Paper No. GT2003-38729.
38.
McAuliffe
,
B. R.
, and
Sjolander
,
S. A.
, 2004, “
Active Flow Control Using Steady Blowing for a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
126
(
4
), pp.
560
569
.
39.
Pullan
,
G.
, and
Harvey
,
N. W.
, 2006, “
The Influence of Sweep on Axial Flow Turbine Aerodynamics at Mid-Span
,” ASME Paper No. GT2006-91070.
40.
Traupel
,
W.
, 2000,
Thermische Strömungsmaschinen
, Vol.
1
,
Springer Verlag
,
Auflage, Berlin
, p.
4
.
41.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
621
656
.
42.
Hoheisel
,
H.
, 1985, “
Zusatzuntersuchungen an den Turbinengittern T107 und T106 mit Variation der Schaufelteilung
,” DFVLR, Report No. IB 129-85/30.
43.
Kozulovic
,
D.
,
Röber
,
T.
, and
Nürnberger
,
D.
, 2007, “
Application of a Multimode Transition Model to Turbomachinery Flows
,”
Proceedings of the Seventh European Turbomachinery Conference
, Athens, Greece.
44.
Zoric
,
T.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Praisner
,
T.
,
Grover
,
E.
, 2007, “
Comparative Investigation of Three Highly Loaded LP Turbine Airfoils—Part 1: Measured Profile and Secondary Losses at Design Incidence
,” ASME Paper No. GT2007-27537.
45.
Gier
,
J.
,
Stubert
,
B.
,
Brouillet
,
B.
, and
de Vito
,
L.
, 2005, “
Interaction of Shroud Leakage Flow and Main Flow in a Three-Stage LP Turbine
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
649
658
.
46.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
, 2007, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,” ASME Paper No. GT2007-27579.
You do not currently have access to this content.