Local mass transfer measurements on a simulated high-pressure turbine blade are conducted in a linear cascade with tip clearance, using a naphthalene sublimation technique. The effects of tip clearance (0.86–6.90% of chord) are investigated at an exit Reynolds number of 5.8×105 and a low turbulence intensity of 0.2%. The effects of the exit Reynolds number 47×105 and the turbulence intensity (0.2 and 12.0%) are also measured for the smallest tip clearance. The effect of tip clearance on the mass transfer on the pressure surface is limited to 10% of the blade height from the tip at smaller tip clearances. At the largest tip clearance high mass transfer rates are induced at 15% of curvilinear distance Sp/C by the strong acceleration of the fluid on the pressure side into the clearance. The effect of tip clearance on the mass transfer is not very evident on the suction surface for curvilinear distance of Ss/C<0.21. However, much higher mass transfer rates are caused downstream of Ss/C0.50 by the tip leakage vortex at the smallest tip clearance, while at the largest tip clearance, the average mass transfer is lower than that with zero tip clearance, probably because the strong leakage vortex pushes the passage vortex away from the suction surface. High mainstream turbulence level (12.0%) increases the local mass transfer rates on the pressure surface, while a higher mainstream Reynolds number generates higher local mass transfer rates on both near-tip surfaces.

1.
Booth
,
T. C.
,
Dodge
,
P. R.
, and
Hepworth
,
H. K.
,
1982
. “
Rotor-Tip Leakage: Part I-Basic Methodology.
ASME J. Eng. Gas Turbines Power
,
104
, pp.
154
161
.
2.
Mayle, R. E., and Metzger, D. E., 1982. “Heat Transfer at the Tip of an Unshrouded Turbine Blade.” Proc., Seventh Int. Heat Transfer Conference, 3, pp. 87–92.
3.
Sjolander
,
S. A.
, and
Amrud
,
K. K.
,
1987
. “
Effects of Tip Clearance on Blade Loading in a Planar Cascade of Turbine Blades.
ASME J. Turbomach.
,
109
, pp.
237
245
.
4.
Moore
,
J.
, and
Tilton
,
J. S.
,
1988
. “
Tip Leakage Flow in a Linear Turbine Cascade.
ASME J. Turbomach.
,
110
, pp.
18
26
.
5.
Bindon, J. P., 1987. “Pressure Distributions in the Tip Clearance Region of an Unshrouded Axial Turbine as Affecting the Problem of Tip Burnout.” ASME Paper 87-GT-230.
6.
Yamamoto
,
A.
,
1988
. “
Interaction Mechanisms between Tip Leakage Flow and the Passage Vortex in a Linear Turbine Rotor Cascade
,”
ASME J. Turbomach.
,
110
, pp.
329
338
.
7.
Kang
,
S.
, and
Hirsch
,
C.
,
1993
. “
Experimental Study on the Three-Dimensional Flow within a Compressor Cascade with Tip Clearance: Part 1—Velocity and Pressure Fields.
ASME J. Turbomach.
,
115
, pp.
435
443
.
8.
Chyu, M. K., Moon, H. K., and Metzger, D. E., 1988. “Heat Transfer in the Tip Region of Grooved Turbine Blades.” ASME Paper 88-GT-213.
9.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Chyu
,
M. K.
,
1989
. “
Cavity Heat Transfer on a Transverse Groved Wall in a Narrow Flow Channel.
ASME J. Heat Transfer
,
111
, pp.
73
79
.
10.
Metzger
,
D. E.
, and
Rued
,
K.
,
1989
. “
Influence of Turbine Clearance Gap Leakage on Passage Velocity and Heat Transfer near Blade Tips. Part I. Sink Flow Effects on Blade Pressure Side.
ASME J. Turbomach.
,
111
, pp.
284
292
.
11.
Rued
,
K.
, and
Metzger
,
D. E.
,
1989
. “
Influence of Turbine Clearance Gap Leakage on Passage Velocity and Heat Transfer near Blade Tips. Part II. Source Flow Effects on Blade Suction Sides.
ASME J. Turbomach.
,
111
, pp.
293
300
.
12.
Metzger
,
D. E.
,
Dunn
,
M. G.
, and
Hah
,
C.
,
1991
. “
Turbine Tip and Shroud Heat Transfer.
ASME J. Turbomach.
,
113
, pp.
502
507
.
13.
Kim
,
Y. W.
, and
Metzger
,
D. E.
,
1995
. “
Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models.
ASME J. Turbomach.
,
117
, pp.
12
21
.
14.
Kim
,
Y. W.
,
Downs
,
J. P.
,
Soechting
,
F. O.
,
Abdel-Messeh
,
W.
,
Steuber
,
G. D.
, and
Tanrikut
,
S.
,
1995
. “
Summary of the Cooled Turbine Blade Tip Heat Transfer and Film Effectiveness Investigations Performed by Dr. D. E. Metzger.
ASME J. Turbomach.
,
117
, pp.
1
11
.
15.
Bunker
,
R. S.
,
Baily
,
J. C.
, and
Ameri
,
A. A.
,
2000
. “
Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine: Part 1: Experimental Results.
ASME J. Turbomach.
,
122
, pp.
263
271
.
16.
Teng, S., Han, J.-C., and Azad, G. S., 2000. “Detailed Heat Transfer Coefficient Distribution on a Large-Gas Turbine Blade Tip.” ISROMAC-8.
17.
Azad
,
G. S.
,
Han
,
J.-C.
,
Teng
,
S.
, and
Boyle
,
R. J.
,
2000
. “
Heat Transfer and Pressure Distribution on a Gas Turbine Blade Tip.
ASME J. Turbomach.
,
122
, pp.
717
724
.
18.
Goldstein
,
R. J.
, and
Cho
,
H. H.
,
1995
. “
A Review of Mass Transfer Measurements Using Naphthalene Sublimation.
Exp. Therm. Fluid Sci.
,
8
, pp.
416
434
.
19.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
. “
Turbulent Transport on the Endwall in the Region between Adjacent Turbine Blades.
ASME J. Heat Transfer
,
110
, pp.
862
869
.
20.
Goldstein
,
R. J.
,
Wang
,
H. P.
, and
Jabbari
,
M. Y.
,
1995
. “
Influence of Secondary Flows Near the Endwall and Boundary Layer Disturbance on Convective Transport from a Turbine Blade.
ASME J. Turbomach.
,
117
, pp.
657
665
.
21.
Wang
,
H. P.
,
Goldstein
,
R. J.
, and
Olson
,
S. J.
,
1999
. “
Effect of High Free-Stream Turbulence with Large Length Scale on Blade Heat Mass Transfer.
ASME J. Turbomach.
,
121
, pp.
217
224
.
22.
Jin, P., 2000, “Local Measurement and Numerical Modeling of Mass/Heat Transfer From a Turbine Blade in a Linear Cascade With Tip Clearance,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.
23.
Jin, P., and Goldstein, R. J., 2000. “Visualization of Tip Leakage Flow in a Linear Turbine Cascade,” 9th Int. Symposium on Flow Visualization.
You do not currently have access to this content.