Vane endwall heat transfer distributions are documented for a mock aeroderivative combustion system and for a low turbulence condition in a large-scale low speed linear cascade facility. Inlet turbulence levels range from below 0.7% for the low turbulence condition to 14% for the mock combustor system. Stanton number contours are presented at both turbulence conditions for Reynolds numbers based on true chord length and exit conditions ranging from 500,000 to 2,000,000. Low turbulence endwall heat transfer shows the influence of the complex three-dimensional flow field, while the effects of individual vortex systems are less evident for the high turbulence cases. Turbulent scale has been documented for the high turbulence case. Inlet boundary layers are relatively thin for the low turbulence case, while inlet flow approximates a nonequilibrium or high turbulence channel flow for the mock combustor case. Inlet boundary layer parameters are presented across the inlet passage for the three Reynolds numbers and both the low turbulence and mock combustor inlet cases. Both midspan and 95% span pressure contours are included. This research provides a well-documented database taken across a range of Reynolds numbers and turbulence conditions for assessment of endwall heat transfer predictive capabilities.

1.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flow in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
248
257
.
2.
Klein, A., 1966, “Investigation of the Entry Boundary Layer on the Secondary Flows in the Blading of Axial Turbines,” BHRA T 1004.
3.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
, 1977, “Three-Dimensional Flow Within a Turbine Cascade Passage,” ASME J. Eng. Power, pp. 21–28.
4.
Marchal, P., and Sieverding, C. H., 1977, “Secondary Flows Within Turbomachinery Bladings,” AGARD Conf. Proc., AGARD CP 214.
5.
Ames, F. E., Hylton, L. D., and York, R. E., 1986, unpublished work on the impact of the inlet endwall boundary layer on secondary losses and velocity vectors in a compressible turbine cascade, Allison Gas Turbine Division of General Motors.
6.
Zess, G. A., and Thole, K. A., 2001, “Computational Design and Experimental Evaluation of Using an Inlet Fillet on a Gas Turbine Vane,” ASME Paper No. 2001-GT-404.
7.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Flow Measurements in a Nozzle Guide Vane Passage With a Low Aspect Ratio and Endwall Contouring
,”
ASME J. Turbomach.
,
122
, pp.
659
666
.
8.
York
,
R. E.
,
Hylton
,
L. D.
, and
Milelc
,
M. S.
,
1984
, “
An Experimental Investigation of Endwall Heat Transfer and Aerodynamics in a Linear Vane Cascade
,”
ASME J. Eng. Gas Turbines Power
,
106
, p.
159
159
.
9.
Harasgama
,
S. P.
, and
Wedlake
,
E. T.
,
1989
, “
Heat Transfer and Aerodynamics of a High Rim Speed Turbine Nozzle Guide Vane Tested in the RAE Isentropic Light Piston Cascade
,”
ASME J. Turbomach.
,
113
, pp.
384
391
.
10.
Spencer
,
M. C.
,
Jones
,
T. V.
,
Lock
,
G. D.
,
1996
, “
Endwall Heat Transfer Measurements in an Annular Cascade of Nozzle Guide Vanes at Engine Representative Reynolds and Mach Numbers
,”
Int. J. Heat Fluid Flow
,
17
, pp.
139
147
.
11.
Arts, T., and Heider, R., 1994, “Aerodynamic and Thermal Performance of a Three Dimensional Annular Transonic Nozzle Guide Vane, Part-I Experimental Investigation,” Paper No. 1994-31, 30th AIAA/ASME/SAE/ASEE Joint propulsion conference.
12.
Radomsky
,
R.
, and
Thole
,
K. A.
,
2000
, “
High Freestream Turbulence Effects in the Endwall Leading Edge Region
,”
ASME J. Turbomach.
,
122
, pp.
699
708
.
13.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
, pp.
862
869
.
14.
Giel, P. W., Thurman, D. R., Van Fossen, G. J., Hippensteele, A. A., and Boyle, R. J., 1996, “Endwall Heat Transfer Measurements in a Transonic Turbine Cascade,” ASME Paper No. 96-GT-180.
15.
Boyle, R. J., and Lucci, B. L., 1996, “Predicted Turbine Heat Transfer for a Range of Test Conditions,” ASME Paper No. 96-GT-304.
16.
FLUENT 5.5, 2000, FLUENT 5.5 User’s Guide, Fluent, Inc., Lebanon, N.H.
17.
Hippensteele, S. A., Russell, L. M., and Torres, F. J., 1985, “Local Heat-Transfer Measurements on a Large, Scale-Model Turbine Blade Airfoil Using a Composite of a Heater Element and Liquid Crystals,” MASA Technical Memo. 86900.
18.
Hippensteele
,
S. A.
,
Russell
,
L. M.
, and
Torres
,
F. J.
, 1986, “Use of a Liquid-Crystal, Heater-Element Composite for Quantitative High-Resolution Heat Transfer Coefficients on a Turbine Airfoil, Including Turbulence and Surface Roughness Effects,” NASA Tech. Memo., 87355.
19.
Hippensteele
,
S. A.
, 1988, “High-Resolution Liquid-Crystal Heat-Transfer Measurements on the End Wall of a Turbine Passage with Variations in Reynolds Number,” NASA Tech. Memo., 100827.
20.
Jones
,
T. V.
, and
Hippensteele
,
S. A.
, 1988, “High-Resolution Heat-Transfer-Coefficient Maps Applicable to Compound-Curve Surface Using Liquid Crystals in a transient wind tunnel,” NASA Tech. Memo., 89855.
21.
Camci
,
C.
,
Glezer
,
B.
,
Owen
,
J. M.
,
Pilbrow
,
R. G.
, and
Syson
,
B. J.
,
1998
, “
Application of Thermochromic Liquid Crystal to Rotating Surfaces
,”
ASME J. Turbomach.
,
120
, pp.
100
103
.
22.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.
23.
Ames, F. E., Kwon, O., and Moffat, R. J., 1999, “An Algebratic Model for High Intensity Large Scale Turbulence,” ASME Paper No. 99-GT-160.
24.
Ames
,
F. E.
, and
Plesniak
,
M. W.
,
1997
, “
The Influence of Large Scale, High Intensity Turbulence on Vane Aerodynamic Losses, Wake Growth, and Exit Turbulence Parameters
,”
ASME J. Turbomach.
,
119
, pp.
182
182
.
25.
Kays, W. M., and Crawford, M. E., 1993, Convective Heat and Mass Transfer, 3rd Edition, McGraw-Hill, New York.
You do not currently have access to this content.