This paper describes a study of the interaction between the pressure surface separation and the secondary flow on low-pressure turbine blades. It is found that this interaction can significantly affect the strength of the secondary flow and the loss that it creates. Experimental and numerical techniques are used to study the secondary flow in a family of four low-pressure turbine blades in linear cascade. These blades are typical of current designs, share the same suction surface and pitch, but have differing pressure surfaces. A mechanism for the interaction between the pressure surface separation and the secondary flow is proposed and is used to explain the variations in the secondary flows of the four blades. This mechanism is based on simple dynamical secondary flow concepts and is similar to the aft-loading argument commonly used in modern turbine design.

1.
Brear
,
M. J.
,
Hodson
,
H. P.
, and
Harvey
,
N. W.
,
2001
, “
Pressure Surface Separations in Low-Pressure Turbines—Part 1: Midspan Behavior
,”
ASME J. Turbomach.
,
124
, pp. –.
2.
Hodson
,
H. P.
, and
Dominy
,
R. G.
,
1987
, “
Three-Dimensional Flow in a Low-Pressure Turbine Cascade at Its Design Condition
,”
ASME J. Turbomach.
,
109
, pp.
177
185
.
3.
Hodson
,
H. P.
, and
Dominy
,
R. G.
,
1987
, “
The off-design performance of a low-pressure turbine cascade
,”
ASME J. Turbomach.
,
109
, pp.
201
209
.
4.
Yamamoto, A., Tominaga, J., Matsunuma, T., and Outa E., 1994, “Detailed Measurements of Three-Dimensional Flows and Losses Inside an Axial Turbine Rotor,” ASME Paper No. 94-GT-348.
5.
Curtis
,
E. M.
,
Hodson
,
H. P.
,
Banieghbal
,
M. R.
,
Denton
,
J. D.
,
Howell
,
R. J.
, and
Harvey
,
N. W.
,
1996
, “
Development of Blade Profiles for Low Pressure Turbine Applications
,”
ASME J. Turbomach.
,
119
, pp.
531
538
.
6.
Brear, M. J., 2000, “Pressure surface separations in low pressure turbines,” Ph. D dissertation, Cambridge University, Cambridge, UK.
7.
Dominy
,
R. G.
, and
Hodson
,
H. P.
,
1993
, “
An investigation of factors influencing the calibration of five-hole probes for three-dimensional flow measurements
,”
ASME J. Turbomach.
,
115
, pp.
513
519
.
8.
Langston
,
L.
, and
Boyle
,
M. T.
,
1982
, “
A New Surface-Streamline Flow-Visualisation Technique
,”
J. Fluid Mech.
,
125
, pp.
53
57
.
9.
Denton
,
J. D.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
, pp.
18
26
.
10.
Hildebrant
,
T.
, and
Fottner
,
L.
,
1999
, “
A Numerical Study of the Influence of Grid Refinement and Turbulence Modelling on the Flow Field Inside a Highly Loaded Turbine Cascade
,”
ASME J. Turbomach.
,
121
, pp.
709
716
.
11.
Duden
,
A.
,
Raab
,
I.
, and
Fottner
,
L.
,
1998
, “
Controlling the Secondary Flow in a Turbine Cascade by 3-D Airfoil Design and Endwall Contouring
,”
ASME J. Turbomach.
,
121
, pp.
191
199
.
12.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. W.
,
1997
, “
Boundary Layer Development in Axial Flow Compressors and Turbines—Part 3: LP turbines
,”
ASME J. Turbomach.
,
119
, pp.
225
237
.
13.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
, pp.
621
656
.
14.
Weiss
,
A. P.
, and
Fottner
,
L.
,
1995
, “
The Influence of Load Distribution on Secondary Flow in Straight Turbine Cascades
,”
ASME J. Turbomach.
,
117
, pp.
133
141
.
You do not currently have access to this content.