Abstract

The integration design of the intermediate turbine ducts (ITDs) with the first row of the low-pressure turbine vane can significantly reduce the length of the turbine section, thus reducing the weight and drag of the aero-engine. This paper investigates the effects of the hub profile on the aerodynamic performance of integrated ITDs (IITDs). The flow features and loss mechanism of four IITDs are studied by experimental, numerical, and theoretical methods. In the baseline case, an open corner separation occurs near the hub-suction surface corner, which results in a significant loss. The loss is broken down into the parts generated by the mean vortex and turbulence theoretically. The open corner separation causes significant turbulence loss. To reduce the size of the separation zone, the positive radial/spanwise pressure gradient near hub is increased by moving the hub profile near the vane rear part slightly downward. As a result, a small closed corner separation with three-dimensional topology occurs instead of the open corner separation in the baseline case. The corner shape factor is defined to quantitatively describe the closed corner separation. When the hub profile moves further downward, the loss due to the corner separation reduces, but the loss generated in the vane passage away from hub increases mainly due to the mixing as the low-momentum flow near the hub transports toward the mid span. The change of the overall loss is subject to the combination of the two effects, and should be balanced during the design process.

References

1.
Zhang
,
Y.
,
Hu
,
S.
,
Mahallati
,
A.
,
Zhang
,
X.-F.
, and
Vlasic
,
E.
,
2018
, “
Effects of Area Ratio and Mean Rise Angle on the Aerodynamics of Interturbine Ducts
,”
ASME J. Turbomach.
,
140
(
9
), p.
091006
.
2.
Merli
,
F.
,
Hafizovic
,
A.
,
Krajnc
,
N.
,
Schien
,
M.
,
Peters
,
A.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2022
, “
The Interaction of Main Stream Flow and Cavity Flows in Turbine Center Frames and Turbine Vane Frames
,” ASME Paper No. GT2022-82458.
3.
Göttlich
,
E.
,
2011
, “
Research on the Aerodynamics of Intermediate Turbine Diffusers
,”
Prog. Aeosp. Sci.
,
47
(
4
), pp.
249
279
.
4.
Dong
,
F.
, and
Zhou
,
C.
,
2020
, “
Streamwise Vortex Transportation and Loss Generation in an Intermediate Turbine Duct
,”
Proc. Inst. Mech. Eng. Part A-J. Power Energy
,
234
(
6
), pp.
766
776
.
5.
Marn
,
A.
,
Göttlich
,
E.
,
Cadrecha
,
D.
, and
Pirker
,
H. P.
,
2009
, “
Shorten the Intermediate Turbine Duct Length by Applying an Integrated Concept
,”
ASME J. Turbomach.
,
131
(
4
), p.
041014
.
6.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
99
(
1
), pp.
21
28
.
7.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power
,
102
(
4
), pp.
866
874
.
8.
Coull
,
J. D.
,
2017
, “
Endwall Loss in Turbine Cascades
,”
ASME J. Turbomach.
,
139
(
8
), p.
081004
.
9.
Spataro
,
R.
,
Santner
,
C.
,
Lengani
,
D.
, and
Göttlich
,
E.
,
2012
, “
On the Flow Evolution Through a LP Turbine With Wide-Chord Vanes in an S-Shaped Channel
,” ASME Paper No. GT2012-68178.
10.
Bader
,
P.
,
Sanz
,
W.
,
Spataro
,
R.
, and
Göttlich
,
E.
,
2017
, “
Flow Evolution Through a Turning Midturbine Frame With Embedded Design
,”
J. Propul. Power
,
33
(
6
), pp.
1478
1488
.
11.
Pramstrahler
,
S.
,
Peters
,
A.
,
García De Albéniz
,
M. L.
,
Leitl
,
P. A.
,
Heitmeir
,
F.
, and
Marn
,
A.
,
2022
, “
The Impact of Inlet Flow Angle on Turbine Vane Frame Aerodynamic Performance
,” ASME Paper No. GT2022-78065.
12.
Cranstone
,
A. W.
,
Pullan
,
G.
,
Curtis
,
E. M.
, and
Bather
,
S.
,
2014
, “
Aerodynamic Design of High End Wall Angle Turbine Stages–Part I: Methodology Development
,”
ASME J. Turbomach.
,
136
(
2
), p.
021006
.
13.
Cranstone
,
A. W.
,
Pullan
,
G.
,
Curtis
,
E. M.
, and
Bather
,
S.
,
2014
, “
Aerodynamic Design of High End Wall Angle Turbine Stages–Part II: Experimental Verification
,”
ASME J. Turbomach.
,
136
(
2
), p.
021007
.
14.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2005
, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
331
339
.
15.
Tobak
,
M.
, and
Peake
,
D. J.
,
1982
, “
Topology of Three-Dimensional Separated Flows
,”
Annu. Rev. Fluid Mech.
,
14
(
1
), pp.
61
85
.
16.
Taylor
,
J. V.
, and
Miller
,
R. J.
,
2017
, “
Competing Three-Dimensional Mechanisms in Compressor Flows
,”
ASME J. Turbomach.
,
139
(
2
), p.
021009
.
17.
Yang
,
J.
,
Liu
,
Y.
,
Wu
,
N.
,
Zhang
,
M.
,
Shao
,
W.
, and
Liu
,
Y.
,
2021
, “
A Novel Preliminary Design Method for Intermediate Compressor/Turbine Ducts
,”
Aerosp. Sci. Technol.
,
117
, p.
106974
.
18.
Wallin
,
F.
, and
Eriksson
,
L.-E.
,
2006
, “
Response Surface-Based Transition Duct Shape Optimization
,” ASME Paper No. GT2006-90978.
19.
Naylor
,
E. M. J.
,
Dueñas
,
C. O.
,
Miller
,
R. J.
, and
Hodson
,
H. P.
,
2010
, “
Optimization of Nonaxisymmetric Endwalls in Compressor S-Shaped Ducts
,”
ASME J. Turbomach.
,
132
(
1
), p.
011011
.
20.
Sovran
,
G.
,
1967
,
Fluid Mechanics of Internal Flow
,
Elsevier
,
Amsterdam-London-New York
.
21.
Zhou
,
C.
,
Dong
,
F.
, and
Hou
,
J.
,
2022
, “
The Effects of Incoming Vortex and Wake on the Aerodynamics of an Intermediate Turbine Duct
,”
ASME J. Turbomach.
,
144
(
5
), p.
051012
.
22.
Vera
,
M.
,
Hodson
,
H. P.
, and
Vazquez
,
R.
,
2006
, “The Effect of Mach Number on LP Turbine Wake-Blade Interaction,”
Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines
,
K. C.
Hall
,
R. E.
Kielb
,
and J. P.
Thomas
, eds.,
Springer Netherlands
, pp.
203
216
.
23.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
24.
Menter
,
F. R.
,
Langtry
,
R.
, and
Völker
,
S.
,
2006
, “
Transition Modelling for General Purpose CFD Codes
,”
Flow Turbul. Combust.
,
77
(
1–4
), pp.
277
303
.
25.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
26.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transf.
,
15
(
2
), pp.
301
314
.
27.
Folk
,
M.
,
Miller
,
R. J.
, and
Coull
,
J. D.
,
2020
, “
The Impact of Combustor Turbulence on Turbine Loss Mechanisms
,”
ASME J. Turbomach.
,
142
(
9
), p.
091009
.
28.
Zhao
,
Y.
, and
Sandberg
,
R. D.
,
2020
, “
Using a New Entropy Loss Analysis to Assess the Accuracy of RANS Predictions of an High-Pressure Turbine Vane
,”
ASME J. Turbomach.
,
142
(
8
), p.
081008
.
29.
Hou
,
J.
, and
Zhou
,
C.
,
2020
, “
Loss Mechanism of Low-Pressure Turbine Secondary Flows Due to Different Incoming Boundary Layers
,”
ASME J. Eng. Gas Turbines Power.
,
142
(
10
), p.
101004
.
You do not currently have access to this content.