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Reconstructing Compressor
Non-Uniform Circumferential
Flow Field From Spatially
Undersampled Data—Part 1:
Methodology and Sensitivity
Analysis
The flow field in a compressor is circumferentially non-uniform due to the wakes from
upstream stators, the potential field from both upstream and downstream stators, and
blade row interactions. This non-uniform flow impacts stage performance as well as
blade forced vibrations. Historically, experimental characterization of the circumferential
flow variation is achieved by circumferentially traversing either a probe or the stator
rows. This involves the design of complex traverse mechanisms and can be costly. To
address this challenge, a novel method is proposed to reconstruct compressor non-
uniform circumferential flow field using spatially under-sampled data points from a few
probes at fixed circumferential locations. The paper is organized into two parts. In the
present part of the paper, details of the multi-wavelet approximation for the reconstruction
of circumferential flow and use of the particle swarm optimization algorithm for selection of
probe positions are presented. Validation of the method is performed using the total pres-
sure field in a multi-stage compressor representative of small core compressors in aero
engines. The circumferential total pressure field is reconstructed from eight spatially dis-
tributed data points using a triple-wavelet approximation method. Results show good agree-
ment between the reconstructed and the true total pressure fields. Also, a sensitivity analysis
of the method is conducted to investigate the influence of probe spacing on the errors in the
reconstructed signal. [DOI: 10.1115/1.4050433]

Keywords: flow reconstruction, spatially under-sampled data, compressor non-uniform
circumferential flow, multi-wavelet approximation, particle swarm optimization,
measurement techniques

Introduction
The flow field in a compressor is circumferentially non-uniform.

The circumferential variations measured in the absolute reference
frame are associated with the wakes from upstream stator row(s),
potential fields from both upstream and downstream stator rows,
and their aerodynamic interactions. Also, stator–stator and rotor–
rotor interactions can impact stage performance. For example, the
numerical study conducted by He et al. [1] in a 2.5-stage transonic
axial compressor showed a 0.1% efficiency variation due to stator–
stator interactions and a maximum of 0.7% variation in efficiency
caused by rotor–rotor interactions. The effect of stator–stator inter-
actions on stage performance has been investigated using vane
clocking, the circumferential indexing of adjacent vane rows with
the same vane count. For example, the study conducted by Key
et al. [2] in a three-stage axial compressor showed a 0.27-point var-
iation in the isentropic efficiency of the embedded stage at the
design loading condition and a 1.07-point variation in the embedded
stage efficiency at a high loading condition with changes in vane
clocking configurations. The experimental characterization of
stage efficiency is facilitated when similar vane counts exist

because that means that measuring the flow across a single vane
passage will accurately capture the full-annulus performance. This
is great for research, but it is not a common luxury for real compres-
sors, in which the stators typically have different vane counts
requiring measurements over several pitches, if not the entire
annulus, to accurately capture the circumferential flow variations.
Blade row interactions can also affect rotor resonant response.

The resonant response of a rotor blisk is driven by the forcing func-
tions, aero-damping, and mistuning. The forcing function for rotor
resonant response consists of wakes from upstream stator rows, the
potential field of both upstream and downstream stator rows, and
their aerodynamic interactions. In the study conducted by Choi
et al. [3], results showed 80% differences in the mean blade
response at design loading and 168% differences in the mean
blade response at high loading by varying the clocking of the
upstream stator rows. A follow-up computational study performed
by Salontay et al. [4] showed that the variations in the blade
response are caused by the changes in the phase between the
rotor upstream vortical and downstream potential forcing functions.
In addition to the primary excitations including the wakes from

upstream stator rows and the potential fields from the downstream
vanes, acoustic modes (also known as Tyler–Sofrin modes) gener-
ated by rotor–stator interactions occur at blade passing frequency
and can contribute to rotor resonance. In a recent two-part study
conducted by Terstegen et al. [5] and Sanders et al. [6], the exis-
tence of the acoustic Tyler–Sofrin modes was confirmed experi-
mentally in a three-stage axial compressor, and the corresponding
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analysis demonstrated the importance of acoustic rotor–stator inter-
actions for blade resonant response.
Additionally, the circumferentially non-uniform flow can intro-

duce instrumentation errors in calculating compressor performance
during rig or engine tests. To characterize the performance of a
compressor, rakes are typically equally spaced at several stations
(fixed axial positions) around the annulus [7]. At each station, the
thermodynamic properties acquired from the probes at different
locations are averaged to a single value to represent the mean
flow property. Historically, a simple area-average has been used
because of the associated simplicity in implementation. Other aver-
aging methods have emerged including mass-average, work-
average, and momentum-average methods [8] during the past few
decades, all of which require additional flow field information.
However, regardless of the different averaging methods used,
without the detailed information of flow properties around the full
annulus, the accuracy of the averaged value as a representation of
the true mean flow property is limited, and understanding how
much error it can introduce into the calculation of compressor per-
formance is critical. To answer this question, Stummann et al. [9]
conducted a full-annulus unsteady Reynolds-averaged Navier–
Stokes (URANS) simulation in a 3.5-stage axial compressor at
mid-span and showed that the circumferentially non-uniform flow
can cause more than a one-point error in compressor stage perfor-
mance measurements. In a recent study, Chilla et al. [10] investi-
gated the instrumentation errors caused by circumferential flow
variations in an eight-stage axial compressor representative small
core compressor of an aero-engine. The analysis showed that a
baseline probe configuration with three equally spaced probes
around the annulus yields a maximum of 0.8% error in flow capac-
ity and 2.8 points error in compressor isentropic efficiency. Since
designers are working hard to find efficiency improvements on
the order of 0.1 points, a 2.8-point uncertainty in efficiency is not
sufficient for confirmation of typical performance improvements
in technology development programs.
Therefore, it is of great value to resolve the compressor non-

uniform circumferential flow for precise calculation of compressor
performance, as well as better prediction of blade forced response.
Historically, experimental characterization of the circumferential
flow variation is achieved by circumferentially traversing the flow,
either utilizing a probe traverse mechanism or utilizing fixed instru-
mentation while actuating the stator rows circumferentially. This
involves the design of complex traverse mechanisms that are chal-
lenging to seal and can be costly. To the best of the authors knowl-
edge, there is a dearth of research available in the open literature on
reconstructing compressor circumferentially non-uniform flow
using spatially under-sampleddata froma fewprobes atfixedcircum-
ferential locations. This motivates the work presented in this paper.

Scope of the Paper. The scope of the present part of the paper is
to establish a roadmap for reconstructing the compressor circumfer-
entially non-uniform flow from spatially under-sampled data.
Below are the steps taken to achieve this objective:

(1) Introduce a novel multi-wavelet approximation method for
reconstructing the circumferential flow.

(2) Draw practical guidelines for selection of the most important
wavenumbers.

(3) Establish the procedure for the selection of probe count and
optimal probe positioning.

(4) Provide measures for evaluation of the confidence in the
reconstructed flow.

The paper is organized in the following manner. First, details of
the multi-wavelet approximation method for signal reconstruction,
particle swarm optimization (PSO) for probe position optimization,
and definitions of the Pearson correlation coefficient and fitting resi-
duals to evaluate the confidence in the reconstructed signal are
described in the methodology section. Then, the method validation
is presented using a total pressure field in a multi-stage compressor

available in the open literature. In the final part of the paper, a sen-
sitivity analysis of the method is conducted to quantify the influence
of probe positioning on the error in the reconstructed signal.

Methodology
In theory, the circumferential flow field in turbomachines with a

spatial periodicity of 2π can be described in terms of infinite serial
wavelets of different wavenumbers:

x(θ) = c0 +
∑∞
i=1

(Ai sin(Wn,iθ + φi)) (1)

in which, x(θ) represents the flow property along the circumferential
direction, c0 represents the DC component of the signal,Wn,i repre-
sents the ith wavenumber, and Ai and φi represent the magnitude
and phase of the wavelet of the ith wavenumber. Furthermore,
defining ai = Ai cos φi and bi = Ai sin φi, Eq. (1) can be cast as:

x(θ) = c0 +
∑∞
i=1

(ai sin(Wn,iθ) + bi cos(Wn,iθ)) (2)

Multi-Wavelet Approximation Method. Research shows that
the circumferential flow in a multi-stage compressor is typically dom-
inated by several wavenumbers. In the study performed by Chilla
et al. [10] on the circumferential variations of the stagnation pressure
and temperature flow field in an eight-stage axial compressor repre-
sentative of an aero-engine core compressor, results showed that
the dominant wavenumber in the front and middle of the compressor
is the upstream stator vane count, and the dominant wavenumber in
the rear of the compressor is associated with the struts in the exit duct.
For example, Fig. 1 shows the circumferential total pressure field and
associated dominant wavenumbers at mid-span upstream of stator 6
in the compressor studied by Chilla et al. [10]. The circumferential
variations in the total pressure field are dominated by seven wave-
numbers associated with the vane counts of the blade rows upstream
and downstream of stator 6 (from engine section stator (ESS)/inlet
guide vane (IGV) to S6).
Therefore, instead of using an infinite number of wavelets

described in Eq. (1), the circumferential flow in the compressor
can be approximated by a few (N ) dominant wavelets:

x(θ) ≈ c0 +
∑N
j=1

(aj sin(Wn,jθ) + bj cos(Wn,jθ)) (3)

This is an important step toward reconstructing the circumferen-
tial flow field since it reduces the number of unknown coefficients
from infinity in Eq. (1) to 2N+ 1 in Eq. (2).

Fig. 1 Circumferential total pressure field at mid-span upstream
of stator 6 in a multi-stage axial compressor [10]
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To solve an equation of 2N+ 1 unknowns, a minimum of the
same amount of data points measured at different circumferential
locations, θ= (θ1, θ2, θ3, …, θm), is required. The system can be
described with

AF = x (4)

where A is known as the design matrix with a dimension of
m × (2N+ 1), F is a vector containing 2N+ 1 unknown coeffi-
cients, and x is a m-element vector with all the measurement data
points from different circumferential locations. The mathematical
expressions for A, F, and x are

A=

sinWn,1θ1 cosWn,1θ1 · · · sinWn,Nθ1 cosWn,Nθ1 1

sinWn,1θ2 cosWn,1θ2 · · · sinWn,Nθ2 cosWn,Nθ2 1

..

. ..
. ..

. ..
. ..

. ..
.

sinWn,1θm cosWn,1θm · · · sinWn,Nθm cosWn,Nθm 1

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

F=

a1
b1

..

.

aN
bN

c0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x=

x(θ1)

x(θ2)

..

.

x(θm)

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

To solve for the N wavenumbers of interest described in Eq. (4),
the number of data points in vector x must be greater than the
number of unknown coefficients or m≥ 2N+ 1. However, in prac-
tice, the reconstructed signal contains errors due to the uncertainties
in x(θ), and it is critical to evaluate the confidence in the recon-
structed signal, which requires additional data points in x(θ). There-
fore, a minimum of 2N+ 2 measurement points is required to
characterize N wavenumbers of interest. However, this yields an
over-determined system with more equations than unknowns. In
the present study, the method of least-square-fitting is used for
solving the unknown coefficients in Eq. (4) for an over-determined
system. In Matlab®, this is achieved using the command F= A\x
or F=mldivide(A, x).
With the magnitude and phase for all the wavenumbers of inter-

est, the circumferential flow field can be reconstructed using Eq. (3).
An illustration of reconstruction of the circumferential flow field
from spatially under-sampled data using the multi-wavelet approx-
imation method is shown in Fig. 2.

Wavenumbers of Most Importance. Even though the circum-
ferential flow in compressors can be approximated using a few domi-
nant wavelets, resolving all of these wavenumbers can still be
challenging. For example, as shown in Fig. 1, the total pressure field
in an eight-stage compressor contains seven wavenumbers, which
requires aminimumof15probes to characterize all of thesewavenum-
bers.However, inpractice,due to thecost andblockageassociatedwith
each probe, there is usually a limit on the number of probes allowedper
blade row. Typically, a range of 3–8 rakes/probes per blade row is
achievable and the authors have rarely come across cases of
more than 10 rakes/probes for an individual blade row. However,
according to Eq. (3), a set of 4, 6, and 8 probes can resolve 1, 2, and
3 wavenumbers, respectively. Thus, an intelligent selection of the
most important wavenumbers is critical to assure the best results for
reconstructing the signal from a limited number of probes.
The most important wavenumbers can be determined with the

help of information from either reduced-order modeling or high-
fidelity computational fluid dynamics simulations. For cases with
no information available except for airfoil counts, recommended
guidelines based on previous research of multi-stage interactions
for representative wavenumber selection are

(1) upstream and downstream vane counts;
(2) differences of the upstream and downstream vane counts;

and
(3) wavenumbers associated with low-count stationary compo-

nent (i.e., upstream and downstream struts for the front and
rear stages).

Condition Number. The reconstructed flow field using a multi-
wavelet approximation method is prone to errors in x(θ) from either
uncertainty in probe measurement or in probe positioning. In the
linear system described in Eq. (4), the errors in the reconstructed
signal are affected by the condition number, k, of the design matrix
A. The condition number of the design matrix defines the upper
bound of the relative errors in F with respect to the relative error in
x, which is

‖δF‖
‖F‖ ≤ k(A)

‖δx‖
‖x‖ (5)

The value of the condition number of the design matrix can vary
from one to infinity. A system with a large condition number can
result in excessive error in the reconstructed signal. There are
several formulas for calculation of the condition number of a
matrix, and in the present study, the two-norm is used for vector and
matrix norm calculation. The condition number is calculated using
the formula:

k = ‖A‖‖A+‖ (6)

whereA+ is the inverse ofmatrixA for a squarematrix and theMoore–
Penrose pseudoinverse of matrix A for a rectangular matrix. In the

Fig. 2 Sketch of reconstructing the non-uniform circumferential flow using the multi-wavelet approximation method
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present study, the condition number of designmatrixA is determined
by both probe location, θ, and the wavenumbers of interest, Wn.
Knowing the wavenumbers of interest, the condition number of the
design matrix describes how well the probes are distributed to
capture the wavenumbers of interest. This is the most important
parameter for the selection of probe locations and is, thus, the focus
of the following section.

Particle Swarm Optimization. PSO is a well-known optimiza-
tion technique for solving global optimization problems due to its
high efficiency of convergence. It was first introduced by Eberhart
and Kennedy [11] for simulation of simplified animal social behav-
iors such as bird flocking. In the PSO algorithm, a potential solution
is called a particle, which has two representative parameters includ-
ing the position and velocity. The optimization starts with an initial
population of particles and then moves these particles around in the
search space. The movement of each particle is influenced by its
local best-known position as well as the global best-known position
in the entire search space. As a result, the swarm is iteratively
moving toward the best solution.
In the present study, PSO is used to search for the optimal probe

positions that yield the smallest condition number of the design
matrix. The same algorithm was used to optimize the probe posi-
tions for blade tip timing with success [12]. The design variables
(parameters being optimized) are the circumferential position of
probes, θ, and the objective function is described using:

fobj = k(θ, Wn) + fconstraint (7)

where fconstraint represents the value of the constraint function from
considerations of geometric constraints for placing probes. Two
representative constraints in turbomachines include minimum
spacing between adjacent probes and restricted areas due to
casing fixtures. Probes in turbomachines are typically casing-
mounted through a variety of instrumentation ports. A minimum
probe spacing is, therefore, necessary for practical implementation.
The formula for minimum probe spacing is described as

|Δθ j,i| = |θj − θi| ≥ θmin (8)

Additionally, in many scenarios, it may not be possible to install
probes at all positions around the circumference due to fixtures or
obstructions on certain regions of the casing. A constraint is, there-
fore, required to prevent probes from being placed in these circum-
ferential ranges. The formula for constraints due to casing fixtures is
described as

θi ∈̃ [θ∗1,min, θ
∗
1,max]|[θ∗2,min, θ

∗
2,max] . . .|[θ∗p,min, θ

∗
p,max] (9)

in which, θ∗p,min and θ∗p,max represent the minimum and maximum
fixture location for the pth fixture. During the optimization
process, if the position of any probe violates any of the constraints,
a “penalty” or “cost” will be assigned to the constraint function to
prevent probe placement in that region. At last, it is worth noting
that the PSO used in the present study can also be exchanged by
other global optimization techniques for probe optimization.

Confidence in Reconstructed Signal. It is important to gauge
the confidence in the reconstructed circumferential flow obtained
from the multi-wavelet approximation method. To achieve this
objective, two parameters, including the Pearson correlation coeffi-
cient and root-mean-square of the fitting residual, are proposed.
The Pearson correlation coefficient, or Pearson’s r, is a measure

of the linear correlation between two variables. Its magnitude varies
between 0 and 1, with values close to 1 indicating a strong linear
correlation. In the present study, the two variables used for correla-
tion are the predicted flow properties, xfit(θ), from the reconstructed
signal and the true measurements, x(θ). The formula for calculating

the Pearson correlation coefficient i

ρ=

∑m
j=1 xjxfit,j −

∑m
j=1 xj

∑m
j=1 xfit,j

( )
/m�����������������������������������������������������������������∑m

j=1 x
2
j −

∑m
j=1 xj

( )2
/m

( ) ∑m
j=1 x

2
fit,j −

∑m
j=1 xfit,j

( )2/
m

( )√

(10)

For a well-reconstructed circumferential flow field, the predicted
flow properties will align with true values at all the measurement
locations and yield a value of nearly 1 for the Pearson’s r. In con-
trast, the predicted flow properties from a poorly reconstructed
flow field will deviate from the true measurements resulting in a
small value for Pearson’s r.
In addition to Pearson’s r, the confidence in the reconstructed

flow can also be evaluated in terms of the root-mean-square of
the fitting residual between the reconstructed signal and true mea-
surements. The formula for calculating Rrms is

Rrms =

����������������������
1
m

∑m
j=1

(xfit,j − xj)
2

( )√√√√ (11)

Proof-of-Concept
The objectives for the proof-of-concept include

(1) Examine the effectiveness of the PSO method for probe posi-
tion optimization.

(2) Examine the effectiveness of the multi-wavelet approxima-
tion method in resolving the magnitude and phase informa-
tion of the wavenumbers of interest.

(3) Examine the effectiveness of the multi-wavelet approxima-
tion method in reconstructing the true circumferential flow
field.

The case selected for proof-of-concept is the total pressure field at
mid-span upstream of stator 6 in an eight-stage axial compressor
representative of an aero-engine small core compressor available
in the open literature [10], as shown in Fig. 1. Information of the
total pressure field are obtained from a full-annulus URANS simu-
lation and are referred as the “true flow field” in the rest of the paper.
The selected total pressure field includes seven dominant wavelets
due to the complex blade row interactions in a multi-stage environ-
ment and, therefore, provides an ideal case for the proof-of-concept
and method validation purposes.

Probe Position Optimization Using Particle Swarm
Optimization. With the information of upstream and downstream
stator row vane counts, the three wavenumbers of highest interest
are those associated with the vane counts for S5, S6, and the differ-
ence in the counts, S6–S5, following the guidelines provided in the
previous section. The wavenumber for the S5 count captures the
effect of the wakes from stator 5, the wavenumber of the S6
count captures the effect of the potential field of stator 6, and the
wavenumber of the difference in vane counts (S6–S5) will capture
the interaction of stators 5 and 6. As a result, a minimum of
seven probes are required to resolve these three wavenumbers. In
the present case, the number of probes for signal reconstruction is
selected to be 8, which allows one extra data point for evaluation
of the confidence in the reconstructed flow.
The goal of probe position optimization is to characterize the

combination of the three wavenumbers of interest, as well as all pos-
sible subsets of wavenumber combinations. The optimal probe set is
defined as the probe position leading to the minimum sum of the
squared weighted condition numbers of all the wavenumber combi-
nations. In the present study, three wavenumbers of interest yield a
total of seven wavenumber combinations. The objective function is
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expressed as

fobj =
∑7
i=1

[aWnk(θ, Wn)]
2 + fconstraint (12)

where aWn represents the weighting factor for a combination of
wavenumbers Wn. In the present study, no specific emphasis was
placed on certain wavenumber combinations, and the same weight-
ing factor was used for all of the wavenumber combinations. For all
optimization runs conducted in this paper, a particle swarm size of
5000 was chosen, and the optimization was run for 100 iterations.
Figure 3 shows the change in the value of objective function
during one optimization run. Results show that the value of the
objective function decreases quickly during the first 20 iterations
and gradually settles around 19 after 60 iterations. Therefore, a
selection of 100 iterations is a proper number for the present case
study.
The final probe positions from the run shown in Fig. 3 are indi-

cated by the red circle in Fig. 4(a). One evident feature associated
with the optimized probe set is that they are not equally spaced.
The maximum probe spacing falls between P3 and P4, with a
value of 62 deg, while the minimum probe spacing is 20 deg.
This non-uniform probe spacing allows for characterization of all
wavenumbers of interest. As shown in Fig. 4(b), the condition
numbers are fairly constant for all combinations of wavenumbers.
This is expected and also consistent with the nature of the objective
function, which had a constant weighting factor for all combinations
of wavenumbers. The largest condition number for all the combina-
tions of wavenumbers is less than 2. This indicates that the opti-
mized probe set can discern all the wavenumbers of interest. In
summary, it has been demonstrated that the PSO algorithm is
capable of optimizing probe positions effectively, yielding small
condition numbers for all wavenumbers of interest.
Figure 5 shows the values of Pearson’s r (top) and the

root-mean-square of the fitting residual (bottom) for all wave
number combinations. The predicted optimal wavenumber combi-
nations for single-, double-, and triple-wavelet approximations are
indicated by the second, fourth, and last columns in the chart. For
the single-wavelet approximation, the predicted dominant wave
number, in terms of highest Pearson’s r and smallest fitting residual,
equates to the vane count of stator 5 (S5, vane count 96). For the
double-wavelet approximation, the predicted dominant wavenum-
bers are S5 and S6–S5. Comparing to the single-wavelet approxima-
tion using wavenumber of S5, inclusion of the second wavenumber
S6–S5 yields higher confidence in the reconstructed signal (higher
value of Pearson’s r and smaller residual error). At last, a

wavenumber set of S5, S6–S5, and S6 (vane count 104) yields the
highest fitting confidence and smallest fitting residual among all
the seven wavenumber combinations.
Table 1 lists the values of Pearson’s r and fitting residual, as well

as the rank of individual wavenumber combination. The rank for the
three wavenumbers of interest agrees with the results from the
spatial wavenumber analysis of the true signal shown in Fig. 1. In
other words, the importance of all the wavenumbers of interest
can be quantified and correctly ranked using two parameters: the
Pearson correlation coefficient and the fitting residual. Finally, the
trend in the value of the Pearson correlation and fitting residual
from single- to multi-wavelet approximation can gauge the neces-
sity of including additional wavenumbers. For example, in the
present case, the fitting confidence in terms of Pearson’s correlation
is 99.9% with a fitting residual of less than 0.1% after including
three wavenumbers and, thus, indicates little need to include addi-
tional wavenumbers.
Furthermore, details of true data and fitting data at all measure-

ment locations from the best cases using single-, double-, and

Fig. 3 Illustration of the changes in the objective function
during the optimization of a probe set using PSO

Fig. 4 (a) Optimized probe positions and (b) condition number
for all combinations of possible wave numbers

Fig. 5 Values of Pearson’s r (top) and fitting residual (bottom)
for all possible wave number combinations
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triple-wavelet approximation are shown in Fig. 6. Figure 6(a) shows
both the data from the true measurements and the reconstruction
using the multi-wavelet approximation. Figure 6(b) shows the
deviation between these two data sets. There is significant improve-
ment in data fitting with the additional wavelets. For example, the
best case from the single-wavelet approximation still has large devi-
ations between the fitting and true data at almost all measurement
locations (except for P2), resulting in a maximum of four points
in variation between the fitting data and true measurements, as indi-
cated by the shaded band in Fig. 6(b). The data from double-wavelet
approximation show significant improvement in matching the true
measurements. Furthermore, the fitting using the three-wavelet
approximation shows good agreement with the true measurements
at all the probe locations. The variation between the fitting data
and true measurements is ten times smaller (< 0.3 points) compared
to the results from single-wavelet approximation.
Comparison of the reconstructed total pressure field from the best

cases of single-, double-, and triple- approximation with the true
total pressure field is shown in Fig. 7. Figure 7(a) shows the com-
parison in the spatial domain while Fig. 7(b) shows the comparison
in magnitudes at specific wavenumbers. There is significant differ-
ence in the reconstructed signal using single-wavelet approximation
from the true signal, and this is due to the absence of low wavenum-
ber (S6–S5) components. The deviation between the reconstructed
and true signal is much reduced in the results using the double-
wavelet approximation. Finally, the reconstructed circumferential
total pressure obtained from a triple-wavelet approximation shows
very good agreement with the true total pressure field.
Additionally, the predicted magnitude at specific wavenumbers

from the single-, double-, and triple-approximation methods show

fairly good agreement with the true signal, as shown in Fig. 7(b).
The largest error occurs at the low wavenumber (S6–S5) with a
32.5% over-prediction in magnitude. The errors in the predicted
magnitudes at the two large wavenumbers, S5 and S6, are within
5%, as shown in Table 2. There is less error in the predicted
phase magnitude, with a maximum error of less than 10% at wave-
number S6.
To summarize, the circumferential total pressure field in a multi-

stage compressor representative of small core compressors is recon-
structed using a few spatially under-sampled data points. To start
with, the three wavenumbers of most importance were selected fol-
lowing the guidelines presented in the previous section. This also
led to a selection of eight probes to reconstruct the circumferential
flow. Following that, the circumferential locations of the eight
probes were carefully selected using the PSO algorithm. The PSO
algorithm can optimize probe positions leading to small condition
numbers for all the wavenumber of interest. Finally, the circumfer-
ential total pressure is reconstructed from the eight data points using
a triple-wavelet approximation and very good agreement between
the reconstructed signal and the true signal was achieved.

Sensitivity Analysis
As discussed in the previous section, the reconstructed flow field

using the multi-wavelet approximation method is prone to errors.
There are two sources of error. The first is the systematic error asso-
ciated with the multi-wavelet approximation method since a limited
number of wavelets are utilized. The second is due to the error prop-
agation from the uncertainties in probe measurement and position.
To reduce the systematic error, an increase in the number of
probes is required to allow for characterization of more wavenum-
bers. As to the error propagation from measurement uncertainties
and tolerances in probe positions, a probe set yielding a smaller con-
dition number tends to introduce less error to the reconstructed flow.
It was shown in the previous section that a set of eight probes is suf-
ficient to reconstruct the circumferential flow in an aero-engine
small core compressor with high accuracy. However, no guidelines
have been drawn on the range for the condition number of the
design matrix. Additionally, because of the random nature of the
PSO algorithm and the multitude of local minima, the optimized
probe positions can vary from run to run. Thus, it is important to
understand the influence of the variations in optimized probe posi-
tions on the errors in the reconstructed flow. To bridge this gap, the

Table 1 Rank of data fitting for a variety of wavenumber
combinations

Wave no. combination Pearson correlation Fitting residual Rank

8 (S6–S5) 0.366 1.482 5
96 (S5) 0.903 0.683 4
104 (S6) 0.251 1.541 7
[8, 96] 0.976 0.347 2
[8, 104] 0.437 1.433 6
[96, 104] 0.926 0.601 3
[8, 96, 104] 0.999 0.070 1

Fig. 6 Comparison of the (a) true measurement and fitting data and (b) associated fitting errors from the best cases using
single-, double-, and triple-wavelet approximation
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influence of the design matrix condition number and the influence
of the random nature of the optimized probe positions on the
error in the reconstructed signal were investigated.

Influence of Condition Number. The discussions in the present
section are organized in the following manner. First, the role of the
condition numbers of the design matrix in error propagation is illus-
trated by comparing the reconstructed signals obtained from a good
probe configuration with those from a poor probe configuration.
Following that, the effects of condition number on the errors in
the reconstructed signal are quantified and guidelines for the
upper limit of the condition number of the design matrix are
drawn. To be consistent with results in the previous section, the
same circumferential total pressure field, shown in Fig. 1, was
used for all the analyses presented in this section.
The positions for the good and poor probe configurations are

shown in Fig. 8. Both configurations have a total of eight probes
and the position of the first probe is the same for both sets. As
listed in Table 3, the difference in the two probe sets is the
spacing between the probes. The good probe configuration is the
probe set optimized using PSO, as shown in Fig. 3. The probes
are spaced in a non-uniform manner to resolve all three

wavenumbers of interest. The probes in the poor configuration are
equally spaced, at 18 deg intervals. The condition number of
the good probe set for the combination of wavenumbers Wn=
[S6–S5, S5, S6] is 1.78. In contrast, the condition number of the
poor probe set is on the magnitude of 1014. The errors in the mea-
surements from each probe are indicated by the error bars in Fig. 8.
The abscissa error bar represents the geometric tolerance for probe
installation while the ordinate error bar represents the uncertainty in
the measurement of each sensor. For the analysis presented in this
section, a ±0.1 deg uncertainty in probe circumferential position
and ±0.25% accuracy full scale for the pressure sensors are
selected.
Figure 9 shows the histogram of errors in the reconstructed signal

from 10,000 sets of data points. Each data set, xnoise, was generated
by adding a random error in probe measurement and random error
associated with tolerances in probe position and described as

xnoise = x + rand(em) + rand(ep) (13)

where em is the probe measurement error and ep is the error associ-
ated with probe positioning tolerance. The results from the good
probe configuration are shown in Fig. 9(a), and the results from

Fig. 7 Comparison of true and reconstructed total pressure field in (a) spatial and (b) frequency domain from single-, double-,
and triple-wavelet approximation

Table 2 Comparison of magnitude and phase at wavenumbers
of interest from multi-wavelet approximation with true signal

Wave no.

Magnitude (%) Phase (rad)

True Fitting Error True Fitting Error

8 (S6–S5) 0.62 0.83 32.5 5.42 5.23 3.6
96 (S5) 2.22 2.12 4.4 4.19 4.13 1.4
104 (S6) 0.49 0.49 0.8 3.96 3.61 8.9

Fig. 8 The positions of a good and poor probe set
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the poor probe configuration are shown in Fig. 9(b). The error in the
reconstructed total pressure field using the good probe set varies
from 0.4% to 1.6%, with the majority of the values around 1.0%.
In contrast, the errors in the reconstructed signal using the poor
probe set is extremely large on the order of 1014.

Figure 10 shows the reconstructed signal using the error-free
input data, as well as the best- and worst-reconstructed signals.
The results from the good probe set are shown in Fig. 10(a), and
the results from the poor probe set are shown in Fig. 10(b). The
reconstructed circumferential total pressure field using the good
probe set shows good agreement with the true flow in all three
cases, even for the worst scenario using input data with errors.
However, for the poor probe configuration, there is significant
error in the reconstructed signal, even when using the error-free
input data. Furthermore, the poor probe set failed to reconstruct
the total pressure field using the input data with error. The errors
in the reconstructed signal for the best scenario are extremely
large on the order of 1011. To conclude, the condition number of
the design matrix plays a critical role in the quality of the recon-
structed circumferential flow. The smaller the condition number,
the less error it introduces to the reconstructed flow. A probe set
of large condition number can yield excessive errors in the recon-
structed signal.
Additionally, the effect of the condition number of the design

matrix on the errors in the reconstructed signal is quantified. A
total of ten sets of probes are selected, and the corresponding con-
dition number of the design matrix for these probe sets varies from 2
to 20. At each condition number, the error range of the recon-
structed signal from 10,000 sets of data points with randomly gen-
erated errors is shown in Fig. 11. As expected, there is a general
trend of increased error in the reconstructed signal as the condition
number increases. However, a probe set with a large condition
number can yield a well-reconstructed signal of small error, but
the smaller condition number does give a smaller error band, or
high confidence interval, in the reconstructed signal. Based on the
trend shown in Fig. 11, it is recommended to use a probe set of con-
dition number less than 4 to assure best results in the reconstructed
signal.

Influence of Probe Configurations. Due to the random nature
of the PSO algorithm and the multitude of local minima, the

Table 3 The positions and condition number for the good and
poor probe set

Config. Circumferential positions
Condition

no.

Good [30 deg, 50 deg, 70 deg, 132.0 deg, 155.1 deg,
175.1 deg, 195.1 deg, 231.8 deg]

1.79

Poor [30 deg, 48 deg, 66 deg, 84 deg, 102 deg,
120 deg, 138 deg, 156 deg]

3.67 × 1014

Fig. 9 Representative of well-conditioned and ill-conditioned
probe configurations

Fig. 10 Comparison of reconstructed signal with true signal from (a) a good probe set and (b) a poor probe set
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optimized probe positions can vary from run to run. Figure 12(a)
shows the results of the optimized probe positions from 500 runs.
The position of each probe is indicated by a cross. The optimized
probe positions are distributed over a broad range of the circumfer-
ence. However, the condition number for all the optimized probe
sets is of similar magnitude, as shown in Fig. 12(b). The
maximum value of the design matrix is less than 2.5. To understand
the influence of the variations in optimized probe positions on the
quality of the reconstructed signal, the root-mean-square error in
the reconstructed signal from the 500 different probe sets is
shown in Fig. 13(a). The abscissa is the averaged probe spacing
of the optimized probe set, and the ordinate represents the
root-mean-square error of the reconstructed signal. The errors in
the reconstructed signal from 500 different probe sets are very
small, less than 0.24%. This shows that, regardless of the variations
in the optimized probe positions from run to run using PSO, they all
yield a well-reconstructed circumferential flow. Additionally,
Fig. 13(b) shows the errors in the reconstructed signal from a
variety of equally spaced probe sets. For comparison, the error
bands from the optimized probes are highlighted. There is about a
20:1 variation in the errors of the reconstructed signal depending

on the value of probe spacing. Although there are occasional
cases where equally spaced probe sets yield similar magnitude, or
even smaller error, in the reconstructed signal, the equally spaced
probe set typically yields much larger errors in the reconstructed
signal. Thus, one important takeaway from the sensitivity analysis
can be drawn: if circumstance allows, the location of the probes
shall be optimized to yield best results for flow reconstruction. Oth-
erwise, there can be significant error introduced to the reconstructed
signal due to the large condition number associated with the probe
set, particular for an equally spaced probe set.

Conclusions
The flow field in a compressor is circumferentially non-uniform

due to the wakes from upstream stators as well as the potential field
of adjacent stationary rows. Characterization of this non-uniform
flow is of great importance since it can affect stage performance
and blade forced response. Historically, experimental characteriza-
tion of the circumferential flow variation is achieved by circumfer-
entially traversing either a probe or the stator rows, which requires
complex and costly traverse mechanisms. To address this chal-
lenge, this paper presents a novel method to reconstruct the circum-
ferentially non-uniform flow in turbomachines using spatially
under-sampled data points from a few probes instrumented at
fixed circumferential locations. The method includes two core
techniques:

(1) PSO algorithm for selection of optimal probe position.
(2) Multi-wavelet approximation method to reconstruct the non-

uniform circumferential flow from several dominant
wavenumbers.

The roadmap for implementation of the method includes:

(1) Identify the most important wavenumbers and determine the
number of probes.

(2) Select the optimal probe positions using the PSO algorithm.
(3) Reconstruct the circumferential flow using the multi-wavelet

approximation.
(4) Evaluate the confidence in the reconstructed signal in terms

of Pearson’s r and root-mean-square of fitting residual.

Validation of the method is performed using the total pressure at
mid-span upstream of stator 6 in an eight-stage axial compressor
representative of an aero-engine small core compressor. The

Fig. 11 Effect of designmatrix’s condition number on the errors
in the reconstructed signal

Fig. 12 (a) Optimized probe positions from 500 runs and (b) the
values of their design matrix’s condition number

Fig. 13 Errors in the reconstructed signal from (a) optimized
probe sets and (b) equally spaced probe sets
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circumferential variations in the total pressure field are dominated
by seven wavenumbers associated with the vane counts of the
blade rows upstream and downstream of stator 6 and, therefore, pro-
vides an ideal case for proof-of-concept and method validation. Fol-
lowing that, a sensitivity analysis of the method is conducted to
study the influence of probe spacing on the error in the recon-
structed signal. A summary of the results includes:

(1) The three most important wavenumbers were selected fol-
lowing the guidelines provided in the methodology section,
which also led to the selection of eight probes to reconstruct
the circumferential flow.

(2) The PSO algorithms determined the optimized probe posi-
tions that lead to small condition numbers for all the wave-
numbers of interest.

(3) The multi-wavelet approximation method resolved both the
magnitude and phase of the wavenumbers of interest with
relatively good accuracy.

(4) The circumferential total pressure field is reconstructed from
eight data points using a triple-wavelet approximation, and
very good agreement between the reconstructed signal and
the true signal was achieved.

(5) A design matrix with a larger condition number leads to a
greater chance of introducing larger errors into the recon-
structed signal.

(6) A condition number smaller than 4 is recommended to assure
optimal results in the reconstructed signal.

(7) The optimal probe positions can vary from run to run due to
the random nature of the PSO algorithm, but the influence of
this random nature in the optimized probe position on the
errors in the reconstructed signal is negligible.

To conclude, a roadmap for reconstructing the non-uniform cir-
cumferential flow in turbomachines using spatially under-sampled
data points was established. The method was shown to be robust
and capable of reconstructing the compressor circumferential flow
field with good accuracy. Furthermore, in the second part of this
paper, this method is applied to two compressor component-level
experiments to further demonstrate the potential of this novel
method in resolving the important flow features associated with cir-
cumferential flow non-uniformity.
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