Abstract

Leakage flow loss is an important factor affecting the aerodynamic efficiency of turbines. In this paper, experimental and numerical computational studies were used to investigate three different tips of a highly loaded turbine rotor. The single-cavity tip formed by squealers was considered as the original structure. Based on this, two improved structures were developed, namely, cavity winglet tip (CWT) and double-cavity combined winglet tip (DCWT). Five-hole probe and oil flow visualization were used for experimental studies, and numerical calculations were used to analyze vortex system structure and loss development. It was found that the double-cavity combined winglet tip structure can effectively change the vortex structure inside the cavity and reduce the leakage flowrate. At the same time, the aerodynamic performance was optimized by 4%.

References

1.
Gümmer
,
V.
,
Goller
,
M.
, and
Swoboda
,
M.
,
2008
, “
Numerical Investigation of End Wall Boundary Layer Removal on Highly Loaded Axial Compressor Blade Rows
,”
ASME J. Turbomach.
,
130
(
1
), p.
011015
.
2.
Mizuki
,
S.
, and
Tsujita
,
H.
,
1994
, “
Numerical Calculation of Flow for Cascade With Tip Clearance
,”
Proceedings ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition
,
The Hague, Netherlands
,
June 13–16
.
3.
Bindon
,
J. P.
,
1989
, “
The Measurement and Formation of Tip Clearance Loss
,”
ASME J. Turbomach.
,
111
(
3
), pp.
257
263
.
4.
Denton
,
J. D.
,
1993
, “
The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
5.
Lee
,
S. W.
, and
Kim
,
S. U.
,
2010
, “
Tip Gap Height Effects on the Aerodynamic Performance of a Cavity Squealer Tip in a Turbine Cascade in Comparison With Plane Tip Results: Part 1—Tip Gap Flow Structure
,”
Exp. Fluids
,
49
(
5
), pp.
1039
1051
.
6.
Lee
,
S. W.
, and
Choi
,
M. Y.
,
2010
, “
Tip Gap Height Effects on the Aerodynamic Performance of a Cavity Squealer Tip in a Turbine Cascade in Comparison With Plane Tip Results: Part 2—Aerodynamic Losses
,”
Exp. Fluids
,
49
(
3
), pp.
713
723
.
7.
Dishart
,
P. T.
, and
Moore
,
J.
,
1990
, “
Tip Leakage Losses in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
112
(
4
), pp.
599
608
.
8.
Yamamoto
,
A.
,
1989
, “
Endwall Flow/Loss Mechanisms in a Linear Turbine Cascade With Blade Tip Clearance
,”
ASME J. Turbomach.
,
111
(
3
), pp.
264
275
.
9.
Bohn
,
D.
,
Suerken
,
N.
, and
Kreitmeier
,
F.
,
2001
, “
Leakage Loss Reduction by Endwall Contouring
,”
15th AIAA Computational Fluid Dynamics Conference
,
Anaheim, CA
,
June 11–14
.
10.
Camci
,
C.
,
Dey
,
D.
, and
Kavurmacioglu
,
L.
,
2003
, “
Tip Leakage Flows Near Partial Squealer Rims in an Axial Flow Turbine Stage
,”
Proceedings ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference
,
Atlanta, GA
,
June 16–19
, pp.
79
90
.
11.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
,
Verstraete
,
T.
,
Olive
,
R.
, and
Picot
,
P.
,
2016
, “
Heterogeneous Optimization Strategies for Carved and Squealer-Like Turbine Blade Tips
,”
ASME J. Turbomach.
,
138
(
12
), p.
121011
.
12.
Vincekovic
,
L.
,
John
,
A.
,
Qin
,
N.
, and
Shahpar
,
S.
,
2022
, “
Exploring Topology Optimization for High Pressure Turbine Blade Tips
,”
ASME J. Turbomach.
,
144
(
7
), p.
071013
.
13.
Liu
,
Y.
,
Zhang
,
M.
,
Zhang
,
T.
,
Zhang
,
M.
, and
He
,
Y.
,
2016
, “
Effect of Winglet-Shroud Tip With Labyrinth Seals on Aerodynamic Performance of a Linear Turbine Cascade
,”
ASME J. Fluids Eng.
,
138
(
7
), p.
071103
.
14.
Liu
,
Y.
,
Zhang
,
T.-L.
,
Zhang
,
M.
, and
Zhang
,
M.-C.
,
2016
, “
Numerical and Experimental Investigation of Aerodynamic Performance for a Straight Turbine Cascade With a Novel Partial Shroud
,”
ASME J. Fluids Eng.
,
138
(
3
), p.
031206
.
15.
Zhou
,
Z.
,
Chen
,
S.
, and
Wang
,
S.
,
2020
, “
Aerodynamic Optimization of Winglet-Cavity Tip in an Axial High Pressure Turbine Stage
,”
Int. J. Turbo Jet Engines
,
37
(
4
), pp.
399
411
.
16.
Du
,
K.
,
Li
,
Z.
,
Li
,
J.
, and
Sunden
,
B.
,
2019
, “
Influences of a Multi-Cavity Tip on the Blade Tip and the Over Tip Casing Aerothermal Performance in a High Pressure Turbine Cascade
,”
Appl. Therm. Eng.
,
147
(
1
), pp.
347
360
.
17.
Kharati-Koopaee
,
M.
, and
Moallemi
,
H.
,
2019
, “
Effect of Blade Tip Grooving on the Performance of an Axial Fan at Different Tip Clearances in the Absence and Presence of Inlet Guide Vanes
,”
Proc. Inst. Mech. Eng. Part A
,
234
(
1
), pp.
72
84
.
18.
Treaster
,
A. L.
, and
Yocum
,
A. M.
,
1979
, “
The Calibration and Application of Five-Hole Probes
,”
ISA Trans.
,
18
(
3
), pp.
23
34
.
19.
Lee
,
S. E.
,
Lee
,
S. W.
, and
Kwak
,
H. S.
,
2011
, “
Tip Leakage Aerodynamics Over Stepped Squealer Tips in a Turbine Cascade
,”
Exp. Therm. Fluid Sci.
,
35
(
1
), pp.
135
145
.
20.
Zhang
,
M.
,
Liu
,
Y.
,
Zhang
,
T.
,
Zhang
,
M.
, and
He
,
Y.
,
2017
, “
Aerodynamic Optimization of a Winglet-Shroud Tip Geometry for a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
139
(
10
), p.
101011
.
21.
Zou
,
Z.
,
Shao
,
F.
,
Li
,
Y.
,
Zhang
,
W.
, and
Berglund
,
A.
,
2017
, “
Dominant Flow Structure in the Squealer Tip Gap and Its Impact on Turbine Aerodynamic Performance
,”
Energy
,
138
(
1
), pp.
167
184
.
22.
Maral
,
H.
,
Alpman
,
E.
,
Kavurmacıoğlu
,
L.
, and
Camci
,
C.
,
2019
, “
A Genetic Algorithm Based Aerothermal Optimization of Tip Carving for an Axial Turbine Blade
,”
Int. J. Heat Mass Transfer
,
143
(
1
), p.
118419
.
23.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
24.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program
,
Stanford, CA
,
Dec. 1
.
You do not currently have access to this content.