Abstract

This experimental study examines the evolution of turbulence across an axial compressor and its modification by semicircular axial casing grooves (ACGs) at the pre-stall and near the best efficiency (BEP) flowrates. The turbulence is highly anisotropic and spatially inhomogeneous, with each normal Reynolds stress component evolving differently. Most of the observed trends can be explained by examining the dominant production rate terms. At the pre-stall flowrate, the turbulence increases significantly upon entering the rotor with peak RMS values of axial velocity fluctuations reaching as high as 71% of the mean axial velocity. The region with elevated turbulent kinetic energy (TKE) covers 30% of the outer span near the rotor leading edge, expanding to 50% near the trailing edge. While the TKE in the outer span decays rapidly in the stator, the local turbulence production persists in the stator blade boundary layer. By stabilizing and homogenizing the flow, the ACGs reduce the turbulence production, hence the TKE, in the rotor and the stator. The only exception is an increase in turbulence in the region dominated by groove–passage flow interactions. Near BEP, the TKE is much lower everywhere, except for the region influenced by the outflow from grooves. Downstream of the rotor and the stator, the turbulence level with or without ACGs are similar. The large variations in the magnitude and even the sign of the measured eddy viscosity highlight the extreme non-equilibrium conditions over the entire machine, questioning the fundamental assumptions of local equilibrium in eddy viscosity-based Reynolds stress models.

References

1.
Lakshminarayana
,
B.
,
1986
, “
Turbulence Modeling for Complex Shear Flows
,”
AIAA J.
,
24
(
12
), pp.
1900
1917
.
2.
Lakshminarayana
,
B.
,
1991
, “
An Assessment of Computational Fluid Dynamic Techniques in the Analysis and Design of Turbomachinery—The 1990 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
113
(
3
), pp.
315
352
.
3.
Bradshaw
,
P.
,
1996
, “
Turbulence Modeling With Application to Turbomachinery
,”
Prog. Aerosp. Sci.
,
32
(
6
), pp.
575
624
.
4.
Tucker
,
P. G.
,
2013
, “
Trends in Turbomachinery Turbulence Treatments
,”
Prog. Aerosp. Sci.
,
63
, pp.
1
32
.
5.
Lakshminarayana
,
B.
,
Davino
,
R.
, and
Pouagare
,
M.
,
1982
, “
Three-Dimensional Flow Field in the Tip Region of a Compressor Rotor Passage—Part II: Turbulence Properties
,”
J. Eng. Power
,
104
(
4
), pp.
772
781
.
6.
Liu
,
Y.
,
Yu
,
X.
, and
Liu
,
B.
,
2008
, “
Turbulence Models Assessment for Large-Scale Tip Vortices in an Axial Compressor Rotor
,”
J. Propul. Power
,
24
(
1
), pp.
15
25
.
7.
Durbin
,
P. A.
,
1996
, “
On the k-3 Stagnation Point Anomaly
,”
Int. J. Heat Fluid Flow
,
17
(
1
), pp.
89
90
.
8.
Moore
,
J. G.
, and
Moore
,
J.
,
1999
, “
Realizability in Turbulence Modelling for Turbomachinery CFD
,”
Proceedings of the ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
Indianapolis, IN
,
June 7–10
.
9.
Hah
,
C.
,
Voges
,
M.
,
Mueller
,
M.
, and
Schiffer
,
H. P.
,
2010
, “
Characteristics of Tip Clearance Flow Instability in a Transonic Compressor
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 7: Turbomachinery, Parts A, B, and C
,
Glasgow, UK
,
June 14–18
, pp.
63
74
.
10.
Hah
,
C.
,
Hathaway
,
M.
, and
Katz
,
J.
,
2014
, “
Investigation of Unsteady Flow Field in a Low-Speed One and a Half Stage Axial Compressor: Effects of Tip Gap Size on the Tip Clearance Flow Structure at Near Stall Operation
,”
Proceedings oProceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 2D: Turbomachinery
,
Dusseldorf, Germany
,
June 16–20
, Vol. 45639, p. V02DT44A040.
11.
Casartelli
,
E.
,
Mangani
,
L.
,
Roos Launchbury
,
D.
, and
Del Rio
,
A.
,
2022
, “
Application of Advanced RANS Turbulence Models for the Prediction of Turbomachinery Flows
,”
ASME. J. Turbomach.
,
144
(
1
), p.
011008
.
12.
Roos Launchbury
,
D.
,
Mangani
,
L.
,
Casartelli
,
E.
, and
Del Citto
,
F.
,
2021
, “
A Robust Implementation of a Reynolds Stress Model for Turbomachinery Applications in a Coupled Solver Environment
,”
ASME J. Turbomach.
,
143
(
9
), p.
091008
.
13.
Evans
,
S.
,
Yi
,
J.
,
Nolan
,
S.
,
Joseph
,
L.
,
Ni
,
M.
, and
Kulkarni
,
S.
,
2021
, “
Modeling of Axial Compressor With Large Tip Clearances
,”
ASME J. Turbomach.
,
143
(
6
), p.
061007
.
14.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 7: Turbomachinery, Parts A, B, and C
,
Glasgow, UK
,
June 14–18
, pp.
735
745
.
15.
Horlock
,
J. H.
, and
Denton
,
J. D.
,
2005
, “
A Review of Some Early Design Practice Using Computational Fluid Dynamics and a Current Perspective
,”
ASME J. Turbomach.
,
127
(
1
), pp.
5
13
.
16.
Wu
,
H.
,
Tan
,
D.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2011
, “
Three-Dimensional Flow Structures and Associated Turbulence in the Tip Region of a Waterjet Pump Rotor Blade
,”
Exp. Fluids
,
51
(
6
), pp.
1721
1737
.
17.
Wu
,
H.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2010
, “
Analysis of Turbulence in the Tip Region of a Waterjet Pump Rotor
,”
ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 1, Symposia – Parts A, B, and C
,
Montreal, Quebec, Canada
,
Aug. 1–5
, ASME, pp.
699
711
.
18.
Li
,
Y.
,
Chen
,
H.
,
Tan
,
D.
, and
Katz
,
J.
,
2019
, “
On the Effects of Tip Clearance and Operating Condition on the Flow Structures Within an Axial Turbomachine Rotor Passage
,”
ASME J. Turbomach.
,
141
(
11
), p.
111002
.
19.
Li
,
Y.
,
Chen
,
H.
, and
Katz
,
J.
,
2017
, “
Measurements and Characterization of Turbulence in the Tip Region of an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
139
(
12
), p.
121003
.
20.
Li
,
Y.
,
Chen
,
H.
, and
Katz
,
J.
,
2019
, “
Challenges in Modeling of Turbulence in the Tip Region of Axial Turbomachines
,”
J. Ship Res.
,
63
(
01
), pp.
56
68
.
21.
Moore
,
R. D.
,
Kovich
,
G.
, and
Blade
,
R. J.
,
1971
, “
Effect of Casing Treatment on Overall and Blade Element Performance of a Compressor Rotor
,”
NASA Technical Note
, NASA-TN-D-6538.
22.
Osborn
,
W. M.
,
Lewis
,
G. W. J.
, and
Heidelberg
,
L. J.
,
1971
, “
Effect of Several Porous Casing Treatments on Stall Limit and on Overall Performance of an Axial-Flow Compressor Rotor
,”
NASA Technical Note
, NASA-TN-D-6537.
23.
Takata
,
H.
, and
Tsukuda
,
Y.
,
1977
, “
Stall Margin Improvement by Casing Treatment—Its Mechanism and Effectiveness
,”
J. Eng. Power
,
99
(
1
), pp.
121
133
.
24.
Smith
,
G. D. J.
, and
Cumpsty
,
N. A.
,
1984
, “
Flow Phenomena in Compressor Casing Treatment
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
532
541
.
25.
Brandstetter
,
C.
,
Kegalj
,
M.
,
Wartzek
,
F.
,
Heinichen
,
F.
, and
Schiffer
,
H.-P.
,
2014
, “
Stereo PIV Measurement of Flow Structures Underneath an Axial-Slot Casing Treatment on a One and a Half Stage Transonic Compressor
,”
Proceedings of the 17th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
,
July 7–10
, pp.
1
18
.
26.
Crook
,
A. J.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Adamczyk
,
J. J.
,
1993
, “
Numerical Simulation of Compressor Endwall and Casing Treatment Flow Phenomena
,”
ASME J. Turbomach.
,
115
(
3
), pp.
501
512
.
27.
Fujita
,
H.
, and
Takata
,
H.
,
1984
, “
A Study on Configurations of Casing Treatment for Axial Flow Compressors
,”
Bull. JSME
,
27
(
230
), pp.
1675
1681
.
28.
Chen
,
H.
,
Li
,
Y.
,
Koley
,
S. S.
,
Doeller
,
N.
, and
Katz
,
J.
,
2017
, “
An Experimental Study of Stall Suppression and Associated Changes to the Flow Structures in the Tip Region of an Axial Low Speed Fan Rotor by Axial Casing Grooves
,”
ASME J. Turbomach.
,
139
(
12
), p.
121010
.
29.
Chen
,
H.
,
Koley
,
S. S.
,
Li
,
Y.
, and
Katz
,
J.
,
2019
, “
Systematic Experimental Evaluations Aimed at Optimizing the Geometry of Axial Casing Groove in a Compressor
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 2A: Turbomachinery
,
Phoenix, AZ
,
June 17–21
.
30.
Saraswat
,
A.
,
Koley
,
S. S.
, and
Katz
,
J.
,
2021,
Experimental Characterization of the Evolution of Global Flow Structure in the Passage of an Axial Compressor
,”
Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. Volume 2A: Turbomachinery—Axial Flow Fan and Compressor Aerodynamics
,
Virtual, Online
,
June 7–11
,
ASME
, p.
V02AT31A045.
31.
Chen
,
H.
,
Li
,
Y.
, and
Katz
,
J.
,
2018
, “
On the Interactions of a Rotor Blade Tip Flow With Axial Casing Grooves in an Axial Compressor Near the Best Efficiency Point
,”
ASME J. Turbomach.
,
141
(
1
), p.
011008
.
32.
Müller
,
M. W.
,
Schiffer
,
H. P.
,
Voges
,
M.
, and
Hah
,
C.
,
2011
, “
Investigation of Passage Flow Features in a Transonic Compressor Rotor With Casing Treatments
,”
Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Volume 7: Turbomachinery, Parts A, B, and C
,
Vancouver, British Columbia, Canada
,
June 6–10
, Vol. 54679, pp.
65
75
.
33.
Koley
,
S. S.
,
Chen
,
H.
,
Saraswat
,
A.
, and
Katz
,
J.
,
2021
, “
Effect of Axial Casing Groove Geometry on Rotor-Groove Interactions in the Tip Region of a Compressor
,”
ASME J. Turbomach.
,
143
(
9
), p.
091010
.
34.
Chen
,
H.
,
Li
,
Y.
,
Koley
,
S. S.
, and
Katz
,
J.
,
2021
, “
Effects of Axial Casing Grooves on the Structure of Turbulence in the Tip Region of an Axial Turbomachine Rotor
,”
ASME J. Turbomach.
,
143
(
9
), p.
091009
.
35.
Koley
,
S. S.
,
Saraswat
,
A.
,
Chen
,
H.
, and
Katz
,
J.
,
2022
, “
Effect of the Axial Casing Groove Geometry on the Production and Distribution of Reynolds Stresses in the Tip Region of an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
144
(
9
), p.
091007
.
36.
Saraswat
,
A.
,
Koley
,
S. S.
, and
Katz
,
J.
,
2022
, “
Impact of Operating Conditions and Axial Casing Grooves on the Evolution of Flow Structure Across Blade Rows in an Axial Compressor
,”
Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition
,
Rotterdam, The Netherlands
,
June 13–17
.
37.
Smith
,
L. H.
, Jr.
,
1993
, “
Wake Ingestion Propulsion Benefit
,”
J. Propul. Power
,
9
(
1
), pp.
74
82
.
38.
Smith
,
L. H.
, Jr.
,
1996
, “
Discussion of ASME Paper No. 96-GT-029: Wake Mixing in Axial Flow Compressors
,”
Proceedings of the 1996 ASME Turbo Expo
,
Birmingham, UK
,
June 10–13
.
39.
Wieneke
,
B.
,
2005
, “
Stereo-PIV Using Self-Calibration on Particle Images
,”
Exp. Fluids
,
39
(
2
), pp.
267
280
.
40.
Chow
,
Y. C.
,
Uzol
,
O.
,
Katz
,
J.
, and
Meneveau
,
C.
,
2003
, “
Experimental Study of the Structure of a Rotor Wake in a Complex Turbomachinery Flow
,”
Proceedings of the ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. Volume 1: Fora, Parts A, B, C, and D
,
Honolulu, HI
,
July 6–10
, Vol. 36967, pp.
1007
1019
.
41.
Miorini
,
R. L.
,
Wu
,
H.
, and
Katz
,
J.
,
2012
, “
The Internal Structure of the Tip Leakage Vortex Within the Rotor of an Axial Waterjet Pump
,”
ASME J. Turbomach.
,
134
(
3
), p.
031018
.
42.
Chen
,
H.
,
Li
,
Y.
,
Koley
,
S. S.
,
Doeller
,
N.
, and
Katz
,
J.
,
2017
, “
Visualizations of Flow Structures in the Rotor Passage of an Axial Turbomachine at the Onset of Stall
,”
ASME J. Turbomach.
,
139
(
4
), p.
041008
.
You do not currently have access to this content.