Abstract

The unsteady response of a turbine exposed to pulsatile incoming flow is studied via the analytical model in this article. First, the response of output torque of the turbine to pulsatile condition is theoretically studied and a correlation of the torque response is deduced. The results confirm that the fluctuations of the torque are proportional to the fluctuations of velocity at the rotor inlet. Next, the unsteady response of turbine system is modeled by the method of transfer matrixes of quasi-2D flow elements connected in sequence. The correlations of swallowing capacity and output torque with the imposed pulsatile inlet pressure are obtained via the models. The results prove that the unsteadiness of turbine performance is proportionally enhanced by the pulse magnitude and the acoustic throttle slope in swallowing capacity curve. In particular, the unsteadiness increases first, but then reduces as the Strouhal number increases. The strongest unsteady performance is achieved when the resonance of the system happens at the Strouhal number as 1. Furthermore, the model proves that the total torque deviation of the turbine is proportional to the mass accumulation in a pulse period. This justifies the validity of the widely used assumption of the mass accumulation as an indicator of turbine performance unsteadiness. Finally, the results of the theoretical model are validated against the 1D gas-dynamic simulation via in-house developed code.

References

1.
Rodgers
,
C.
,
2000
, “
Radial Turbines—Blade Number and Reaction Effects
,”
Proceedings of ASME Turbo Expo 2000: Power for Land, Sea, and Air
,
ASME
,
Munich, Germany
,
May 8–11
, Paper No.
2000-GT-456
.
2.
Rodgers
,
C.
,
2003
, “
The Characteristics of Radial Turbines for Small Gas Turbines
,”
Proceedings of ASME Turbo Expo 2003
,
ASME
,
Atlanta, GA
,
June 16–19
, pp.
657
667
.
3.
Watson
,
N.
, and
Janota
,
M. S.
,
1982
,
Turbocharging the Internal Combustion Engine
,
The Macmillan Press Ltd
,
London, UK
.
4.
Gangisetty
,
G.
,
Thomas Jayachandran
,
A. V.
,
Sverbilov
,
V. Y.
,
Zubrilin
,
I. A.
, and
Matveev
,
S. S.
,
2019
, “
Review Paper on Thermo-Acoustic Instabilities in a Gas Turbine Burners—Flashback Avoidance
,”
J. Phys.: Conf. Ser.
,
1276
(
1
), p.
012051
.
5.
Palfreyman
,
D.
, and
Martinez-Botas
,
R. F.
,
2005
, “
The Pulsating Flow Field in a Mixed Flow Turbocharger Turbine: An Experimental and Computational Study
,”
ASME J. Turbomach.
,
127
(
1
), pp.
144
155
.
6.
Copeland
,
C. D.
,
Martinez-Botas
,
R.
, and
Seiler
,
M.
,
2010
, “
Comparison Between Steady and Unsteady Double-Entry Turbine Performance Using the Quasi-Steady Assumption
,”
ASME J. Turbomach.
,
133
(
3
), p.
031001
.
7.
Rajoo
,
S.
, and
Martinez-Botas
,
R. F.
,
2010
, “
Unsteady Effect in a Nozzled Turbocharger Turbine
,”
ASME J. Turbomach.
,
132
(
3
), p.
031001
.
8.
Wallace
,
F. J.
, and
Blair
,
G. P.
,
1965
, “
The Pulsating-Flow Performance of Inward Radial-Flow Turbines
,”
Proceedings of ASME 1965 Gas Turbine Conference and Products Show
,
Washington, DC
,
Feb. 28–Mar. 4
, Paper No. 65-GTP-21.
9.
Benson
,
R. S.
,
1974
, “
Nonsteady Flow in a Turbocharger Nozzleless Radial Gas Turbine
,”
Proceedings of SAE Technical Paper
,
Sept. 9–12
,
SAE
, p.
740739
.
10.
Capobianco
,
M.
, and
Gambarotta
,
A.
,
1990
, “
Unsteady Flow Performance of Turbocharger Radial Turbines
,”
Proceedings of 4th International Conference of Turbocharging and Turbochargers
,
London, UK
,
May 20
, pp.
123
132
.
11.
Luján
,
J. M.
,
Galindo
,
J.
, and
Serrano
,
J. R.
,
2001
, “
Efficiency Characterization of Centripetal Turbines Under Pulsating Flow Conditions
,”
Proceedings of SAE 2001 World Congress
,
SAE International
,
March 5–8
, p.
2001-01-0272
.
12.
Szymko
,
S.
,
Martinez-Botas
,
R. F.
, and
Pullen
,
K. R.
,
2005
, “
Experimental Evaluation of Turbocharger Turbine Performance Under Pulsating Flow Conditions
,”
Proceedings of ASME Turbo Expo 2005: Power for Land, Sea, and Air
,
ASME
,
Reno-Tahoe, NV
,
June 6–9
, pp.
1447
1457
.
13.
Kosuge
,
H.
,
Yamanaka
,
N.
,
Ariga
,
I.
, and
Watanabe
,
I.
,
1976
, “
Performance of Radial Flow Turbines Under Pulsating Flow Conditions
,”
J. Eng. Power
,
98
(
1
), pp.
53
59
.
14.
Costall
,
A.
, and
Martinez-Botas
,
R. F.
,
2007
, “
Fundamental Characterization of Turbocharger Turbine Unsteady Flow Behavior
,”
Proceedings of ASME Turbo Expo 2007: Power for Land, Sea, and Air
,
ASME
,
Montreal, Canada
,
May 14–17
, pp.
1827
1839
.
15.
Karamanis
,
N.
,
Martinez-Botas
,
R. F.
, and
Su
,
C. C.
,
2000
, “
Mixed Flow Turbines: Inlet and Exit Flow Under Steady and Pulsating Conditions
,”
ASME J. Turbomach.
,
123
(
2
), pp.
359
371
.
16.
Rajoo
,
S.
,
Romagnoli
,
A.
, and
Martinez-Botas
,
R. F.
,
2012
, “
Unsteady Performance Analysis of a Twin-Entry Variable Geometry Turbocharger Turbine
,”
Energy
,
38
(
1
), pp.
176
189
.
17.
Galindo
,
J.
,
Tiseira
,
A.
,
Fajardo
,
P.
, and
García-Cuevas
,
L. M.
,
2014
, “
Development and Validation of a Radial Variable Geometry Turbine Model for Transient Pulsating Flow Applications
,”
Energy Convers. Manage.
,
85
, pp.
190
203
.
18.
Copeland
,
C. D.
,
Newton
,
P.
,
Martinez-Botas
,
R. F.
, and
Seiler
,
M.
,
2012
. “
A Comparison of Timescales Within a Pulsed Flow Turbocharger Turbine
,”
Proceedings of 10th International Conference on Turbochargers and Turbocharging
,
IMechE
,
London, UK
,
May 15–16
, p.
389
404
.
19.
Cao
,
T.
, and
Xu
,
L.
,
2016
, “
A Low-Order Model for Predicting Turbocharger Turbine Unsteady Performance
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
072607
.
20.
Yang
,
M.
,
Deng
,
K.
,
Martines-Botas
,
R.
, and
Zhuge
,
W.
,
2016
, “
An Investigation on Unsteadiness of a Mixed-Flow Turbine Under Pulsating Conditions
,”
Energy Convers. Manage.
,
110
, pp.
51
58
.
21.
Yang
,
B.
, and
Martinez-Botas
,
R.
,
2019
, “
Turbodyna: Centrifugal/Centripetal Turbomachinery Dynamic Simulator and Its Application on a Mixed Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101012
.
22.
Galindo
,
J.
,
Fajardo
,
P.
,
Navarro
,
R.
, and
García-Cuevas
,
L. M.
,
2013
, “
Characterization of a Radial Turbocharger Turbine in Pulsating Flow by Means of CFD and Its Application to Engine Modeling
,”
Appl. Energy
,
103
, pp.
116
127
.
23.
Greitzer
,
E.
,
Tan
,
C.
, and
Graf
,
M.
,
2004
,
Internal Flow: Concepts and Applications
,
Cambridge University Press
,
Cambridge, UK
.
24.
Brennen
,
C. E.
,
2011
,
Hydrodynamics of Pumps
,
Concepts NREC & Oxford University Press
,
Oxford, UK
.
25.
Yang
,
M. Y.
,
Padzillah
,
M. H.
,
Zhuge
,
W. L.
,
Martinez Botas
,
R. F.
, and
Rajoo
,
S.
,
2014
, “
Comparison of the Influence of Unsteadiness Between Nozzled and Nozzleless Mixed Flow Turbocharger Turbine
,”
Proceedings of 11th International Conference on Turbochargers and Turbocharging
,
IMechE
,
London, UK
,
May 13–14
, pp.
333
345
.
You do not currently have access to this content.