Abstract

Prediction of the tip clearance noise (TCN) of axial compressors is essential to accurately determine the noise level of the compressor, because it is left unattenuated during propagation. The existing studies on numerical methods are inadequate for accurate determination of the TCN owing to the limited understanding of the physical phenomenon. The most convincing explanation is that the TCN is generated because of the instability in shear waves in the tip clearance region. In this study, the rotating instability theory was developed further by modeling the physical phenomenon of the instability as a Taylor–Couette (T–C) flow. The TCN sources were obtained using T–C flow modeling, and duct noise analysis was performed to obtain the TCN at various locations and frequencies. The TCN predictions were compared with the existing experimental results and noise results obtained using FW–H. Results showed that the T–C flow modeling is sufficiently accurate for predicting the frequencies, wavenumber distributions, and SPL of the tip clearance noise of axial compressors.

References

1.
Longhouse
,
R. E.
,
1976
, “
Noise Mechanism Separation and Design Considerations for Low Tip-Speed, Axial-Flow Fans
,”
J. Sound Vib.
,
48
(
4
), pp.
461
474
.
2.
Moreau
,
S.
, and
Sanjose
,
M.
,
2016
, “
Sub-Harmonic Broadband Humps and Tip Noise in Low-Speed Ring Fans
,”
J. Acoust. Soc. Am.
,
139
(
1
), pp.
118
127
.
3.
Buchwald
,
P.
,
Vogt
,
D. M.
,
Grilliat
,
J.
,
Laufer
,
W.
,
Schmitz
,
M. B.
,
Lucius
,
A.
, and
Schneider
,
M.
,
2018
, “
Aeroacoustic Analysis of Low-Speed Axial Fans With Different Rotational Speeds in the Design Point
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
052601
.
4.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Experimental Study of Tip Clearance Losses and Noise in Axial Turbomachines and Their Reduction
,”
ASME J. Turbomach.
,
119
(
3
), pp.
460
471
.
5.
Galindo
,
J.
,
Tiseira
,
A.
,
Navarro
,
R.
, and
López
,
M.
,
2015
, “
Influence of Tip Clearance on Flow Behavior and Noise Generation of Centrifugal Compressors in Near-Surge Conditions
,”
Int. J. Heat Fluid Flow
,
52
, pp.
129
139
.
6.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Rotating Blade Flow Instability as a Source of Noise in Axial Turbomachines
,”
J. Sound Vib.
,
203
(
5
), pp.
833
853
.
7.
Luo
,
B.
,
Chu
,
W.
, and
Zhang
,
H.
,
2020
, “
Tip Leakage Flow and Aeroacoustics Analysis of a Low-Speed Axial Fan
,”
Aerosp. Sci. Technol.
,
98
, p.
105700
.
8.
Fukano
,
T.
,
Takamatsu
,
Y.
, and
Kodama
,
Y.
,
1986
, “
The Effects of Tip Clearance on the Noise of Low Pressure Axial and Mixed Flow Fans
,”
J. Sound Vib.
,
105
(
2
), pp.
291
308
.
9.
Jang
,
C.-M.
,
Fukano
,
T.
, and
Furukawa
,
M.
,
2003
, “
Effects of the Tip Clearance on Vortical Flow and Its Relation to Noise in an Axial Flow Fan
,”
JSME Int. J. Ser. B
,
46
(
3
), pp.
356
365
.
10.
Pardowitz
,
B.
,
Tapken
,
U.
,
Sorge
,
R.
,
Thamsen
,
P. U.
, and
Enghardt
,
L.
,
2014
, “
Rotating Instability in an Annular Cascade: Detailed Analysis of the Instationary Flow Phenomena
,”
ASME J. Turbomach.
,
136
(
6
), p.
061017
.
11.
Pardowitz
,
B.
,
Moreau
,
A.
,
Tapken
,
U.
, and
Enghardt
,
L.
,
2015
, “
Experimental Identification of Rotating Instability of an Axial Fan With Shrouded Rotor
,”
Proc. Inst. Mech. Eng. A: J. Power Energy
,
229
(
5
), pp.
520
528
.
12.
Pardowitz
,
B.
,
Tapken
,
U.
,
Neuhaus
,
L.
, and
Enghardt
,
L.
,
2015
, “
Experiments on an Axial Fan Stage: Time-Resolved Analysis of Rotating Instability Modes
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062605
.
13.
Dehner
,
R.
,
Sriganesh
,
P.
,
Selamet
,
A.
, and
Miazgowicz
,
K.
,
2021
, “
Generation Mechanism of Broadband Whoosh Noise in an Automotive Turbocharger Centrifugal Compressor
,”
ASME J. Turbomach.
,
143
(
12
), p.
121003
.
14.
Zhu
,
T.
, and
Carolus
,
T. H.
,
2018
, “
Axial Fan Tip Clearance Noise: Experiments, Lattice–Boltzmann Simulation, and Mitigation Measures
,”
Int. J. Aeroacoustics
,
17
(
1–2
), pp.
159
183
.
15.
Zhu
,
T.
,
Lallier-Daniels
,
D.
,
Sanjose
,
M.
,
Moreau
,
S.
, and
Carolus
,
T.
,
2018
, “
Rotating Coherent Flow Structures as a Source for Narrowband Tip Clearance Noise From Axial Fans
,”
J. Sound Vib.
,
417
, pp.
198
215
.
16.
Boudet
,
J.
,
Cahuzac
,
A.
,
Kausche
,
P.
, and
Jacob
,
M. C.
,
2015
, “
Zonal Large-Eddy Simulation of a Fan Tip-Clearance Flow, With Evidence of Vortex Wandering
,”
ASME J. Turbomach.
,
137
(
6
), p.
061001
.
17.
Longhouse
,
R. E.
,
1978
, “
Control of Tip-Vortex Noise of Axial Flow Fans by Rotating Shrouds
,”
J. Sound Vib.
,
58
(
2
), pp.
201
214
.
18.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2001
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
,
123
(
3
), pp.
453
460
.
19.
März
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
(
3
), pp.
367
374
.
20.
Roger
,
M.
,
Moreau
,
S.
, and
Guedel
,
A.
,
2006
, “
Broadband Fan Noise Prediction Using Single-Airfoil Theory
,”
Noise Control Eng. J.
,
54
(
1
), pp.
5
14
.
21.
Roger
,
M.
, and
Moreau
,
S.
,
2010
, “
Extensions and Limitations of Analytical Airfoil Broadband Noise Models
,” I
nt. J. Aeroacoustics
,
9
(
3
), pp.
273
305
.
22.
White
,
F. M.
,
2010
,
Fluid Mechanics
, 7th ed.,
University of Rhode Island, McGraw-Hill
,
New York City
, p.
239
.
23.
Serre
,
E.
,
Sprague
,
M. A.
, and
Lueptow
,
R. M.
,
2008
, “
Stability of Taylor–Couette Flow in a Finitelength Cavity With Radial Throughflow
,”
Phys. Fluids
,
20
(
3
), p.
034106
.
24.
Kirillov
,
O. N.
,
2013
,
Nonconservative Stability Problems of Modern Physics
,
Walter de Gruyter
,
Berlin
, pp.
364
366
.
25.
DiPrima
,
R. C.
, and
Hall
,
P.
,
1984
, “
Complex Eigenvalues for the Stability of Couette Flow
,”
Proc. R. Soc. A
,
396
(
1810
), pp.
75
94
.
26.
Pardowitz
,
B.
,
Peter
,
J.
,
Tapken
,
U.
,
Thamsen
,
P. U.
, and
Enghardt
,
L.
,
2015
, “
Visualization of Secondary Flow Structures Caused by Rotating Instability: Synchronized Stereo High-Speed PIV and Unsteady Pressure Measurements
,”
45th AIAA Fluid Dynamics Conference
,
Dallas, TX
,
June 22
.
27.
Gebhardt
,
T.
, and
Grossmann
,
S.
,
1993
, “
The Taylor–Couette Eigenvalue Problem With Independently Rotating Cylinders
,”
Zeitschrift für Physik B Condensed Matter
,
90
(
4
), pp.
475
490
.
28.
Nabila
,
A.-M.
,
Poncet
,
S.
, and
Abdelrahmane
,
G.
,
2015
, “
Numerical Simulations of Co-and Counter Taylor–Couette Flows: Influence of the Cavity Radius Ratio on the Appearance of Taylor Vortices
,”
Am. J. Fluid Dyn.
,
5
(
1
), pp.
17
22
.
29.
Burde
,
G. I.
,
Nasibullayev
,
I. S.
, and
Zhalij
,
A.
,
2007
, “
Stability Analysis of a Class of Unsteady Nonparallel Incompressible Flows Via Separation of Variables
,”
Phys. Fluids
,
19
(
11
), p.
114110
.
30.
Gilat
,
A.
, and
Subramaniam
,
V.
,
2018
,
Numerical Methods for Engineers and Scientists
, 3rd ed.,
Wiley
,
Hoboken, NJ
, pp.
310
319
.
31.
Gliebe
,
P.
,
Mani
,
R.
,
Shin
,
H.
,
Mitchell
,
B.
,
Ashford
,
G.
,
Salamah
,
S.
, and
Connell
,
S.
,
2000
, “
Aeroacoustic Prediction Codes
,” NASA-CR, 210244, p.
2000
.
32.
Farassat
,
F.
, and
Brentner
,
K. S.
,
1988
, “
The Uses and Abuses of the Acoustic Analogy in Helicopter Rotor Noise Prediction
,”
J. Am. Helicopter Soc.
,
33
(
1
), pp.
29
36
.
33.
Choi
,
W.-S.
,
Choi
,
Y.
,
Hong
,
S.-Y.
,
Song
,
J.-H.
,
Kwon
,
H.-W.
, and
Jung
,
C.-M.
,
2016
, “
Turbulenceinduced Noise of a Submerged Cylinder Using a Permeable FW–H Method
,”
Int. J. Nav. Archit. Ocean Eng.
,
8
(
3
), pp.
235
242
.
34.
Choi
,
Y.-S.
,
Choi
,
W.-S.
,
Hong
,
S.-Y.
,
Song
,
J. H.
,
Kwon
,
H.-W.
,
Seol
,
H.-S.
, and
Jung
,
C.-M.
,
2017
, “
Development of Formulation Q1As Method for Quadrupole Noise Prediction Around a Submerged Cylinder
,”
Int. J. Nav. Archit. Ocean Eng.
,
9
(
5
), pp.
484
491
.
35.
Lewy
,
S.
,
2007
, “
Prediction of Turbofan Rotor or Stator Broadband Noise Radiation
,”
Acta Acust. United Acust.
,
93
(
2
), pp.
275
283
.
36.
Siemens
,
2019
,
Simcenter STAR-CCM+ Version 14.06 User Guide
.
37.
Cao
,
Z.
,
Zhang
,
X.
,
Zhang
,
F.
,
Song
,
C.
,
Gao
,
X.
, and
Liu
,
B.
,
2021
, “
Tip Leakage Vortex and Its Breakdown Mechanism in Aspirated Compressor Cascades Designed With Conventional Method and Curvature Induced Pressure Recovery Concept
,”
Aerosp. Sci. Technol.
,
113
, p.
106692
.
38.
Li
,
T.
,
Wu
,
Y.
, and
Ouyang
,
H.
,
2021
, “
Numerical Investigation of Tip Clearance Effects on Rotating Instability of a Low-Speed Compressor
,”
Aerosp. Sci. Technol
,
111
.
You do not currently have access to this content.