Abstract

To improve the resolution accuracy and get deep insight into the flow structures in squealer tip gap, the very large Eddy simulation (VLES) method was implemented into the commercial computational fluid dynamics (CFD) solver with the user-defined function (UDF). Based on the published experimental data, the numerical accuracy of VLES method was validated. With the VLES method, the unsteady heat transfer coefficient distributions on the squealer tip and total pressure loss in the blade passage were computed. The influences of coherent vortex structures on aero-thermal performance in the squealer tip gap were analyzed. The results show that the Brown-Roshko vortices are the main driver for the formation of cavity vortex system. The direct impingement of pass-over leakage into the cavity is the main cause of high heat transfer area on the cavity floor near leading edge. The unsteady fluctuations of leakage rate through the tip gap reach about ±8% of the time-averaged value. The development of leakage vortex accounts for the major contribution of total pressure loss in the squealer tipped blade. Due to flow unsteadiness, the fluctuation of pitch-averaged total pressure loss coefficient induced by leakage vortex system reaches about ±30% of the time-averaged value. The unsteady fluctuation of pitch-averaged heat transfer coefficient on the cavity floor reaches about ±35% of the time-averaged value, while on the shroud surface it is only fluctuated by about ±10%.

References

1.
Denton
,
J. D.
, and
Cumpsty
,
N. A.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
,
22
(
2
), pp.
271
285
.
3.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
Taylor & Francis Group
,
New York
.
4.
Pátý
,
M.
, and
Lavagnoli
,
S.
,
2020
, “
A Novel Vortex Identification Technique Applied to the 3D Flow Field of a High-Pressure Turbine
,”
ASME J. Turbomach.
,
142
(
3
), p.
031004
.
5.
Papa
,
M.
,
Goldstein
,
R. J.
, and
Gori
,
F.
,
2002
, “
Effects of Tip Geometry and Tip Clearance on the Mass/Heat Transfer from a Large-Scale Gas Turbine Blade
,”
ASME Paper No. GT2002-30192
.
6.
Yang
,
H.
,
Acharya
,
S.
,
Ekkad
,
S. V.
,
Prakash
,
C.
, and
Bunker
,
R.
,
2002
, “
Numerical Simulation of Flow and Heat Transfer Past a Turbine Blade With a Squealer Tip
,”
ASME Paper No. GT2002-30193
.
7.
De Maesschalck
,
C.
,
Andreoli
,
V.
,
Paniagua
,
G.
,
Gillen
,
T.
, and
Barker
,
B.
,
2019
, “
Aerothermal Optimization of Turbine Squealer Tip Geometries With Arbitrary Cooling Injection
,”
ASME Paper No. GT2019-91208
.
8.
Kim
,
Y. W.
, and
Metzger
,
D. E.
,
1995
, “
Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models
,”
ASME J. Turbomach.
,
117
(
1
), pp.
12
21
.
9.
Da Silva
,
L. M.
, and
Tomita
,
J. T.
,
2013
, “
A Study of the Heat Transfer in Winglet and Squealer Rotor Tip Configurations for a Non-Cooled HPT Blade Based on CFD Calculations
,”
ASME Paper No. GT2013-95164
.
10.
Vass
,
P.
, and
Arts
,
T.
,
2011
, “
Numerical Investigation of High-Pressure Turbine Blade Tip Flows: Analysis of Aerodynamics
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
225
(
A7
), pp.
940
953
.
11.
Saul
,
A. J.
,
Ireland
,
P. T.
,
Coull
,
J. D.
,
Wong
,
T. H.
,
Li
,
H.
, and
Romero
,
E.
,
2019
, “
An Experimental Investigation of Adiabatic Film Cooling Effectiveness and Heat Transfer Coefficient on a Transonic Squealer Tip
,”
ASME J. Turbomach.
,
141
(
9
), p.
091005
.
12.
Maral
,
H.
,
Senel
,
C. B.
, and
Kavurmacioglu
,
L.
,
2020
, “
A Parametric and Computational Aerothermal Investigation of Squealer Tip Geometry in an Axial Turbine: A Parametric Approach Suitable For Future Advanced Tip Carving Optimizations
,”
ASME Paper No. GT2016-58107
.
13.
Duan
,
P. H.
, and
He
,
L.
,
2020
,
Optimization of Turbine Squealer Tip Cooling Design By Combining Shaping and Flow Injection
,”
ASME Paper No. GT2020-15116
.
14.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Chyu
,
M. K.
,
1989
, “
Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel
,”
ASME J. Heat Transfer-Trans. ASME
,
111
(
1
), pp.
73
79
.
15.
Chyu
,
M. K.
,
Moon
,
H. K.
, and
Metzger
,
D. E.
,
1989
, “
Heat Transfer in the Tip Region of Grooved Turbine Blades
,”
ASME J. Turbomach.
,
111
(
2
), pp.
131
138
.
16.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
,
1997
, “
Effect of Squealer Tip on Rotor Heat Transfer and Efficiency
,” ASME Paper No. 97-GT-128.
17.
Azad
,
G.
,
Han
,
J. C.
, and
Boyle
,
R. J.
,
2000
, “
Heat Transfer and Flow on the Squealer tip of a Gas Turbine Blade
,” ASME Paper No. 2000-GT-0195.
18.
Krishnababu
,
S. K.
,
Newton
,
P. J.
,
Dawes
,
W. N.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2007
, “
Aero-Thermal Investigations of Tip Leakage Flow in Axial Flow Turbines Part I- Effect of Tip Geometry and Tip Clearance Gap
,” ASME Paper No. GT2007-27954.
19.
Wang
,
J.
,
Sundén
,
B.
,
Zeng
,
M.
, and
Wang
,
Q. W.
,
2012
, “
Influence of Different Rim Widths and Blowing Ratios on Film Cooling Characteristics for a Blade Tip
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
6
), p.
061701
.
20.
Kwak
,
J. S.
, and
Han
,
J. C.
Heat Transfer Coefficient and Film-Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,” ASME Paper No. GT-2002-30555, also published at
ASME J. Turbomach.
,
125
(
4
), pp.
494
502
.
21.
Yang
,
H.
,
Chen
,
H. C.
, and
Han
,
J. C.
,
2004
, “
Numerical Prediction of Film Cooling and Heat Transfer With Different Film Hole Arrangements on the Plane and Squealer Tip of a Gas Turbine Blade
,”
ASME Paper No. GT2004-53199
.
22.
Sakaoglu
,
S.
, and
Kahveci
,
H. S.
,
2019
, “
Effect of Turbine Blade Tip Cooling Configuration on Tip Leakage Flow and Heat Transfer
,”
ASME Paper No. GT2019-90130
.
23.
Zhang
,
Q.
,
O’Dowd
,
D. O.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.
24.
Zhang
,
Q.
, and
He
,
L.
,
2011
, “
Overtip Choking and Its Implications on Turbine Blade-Tip Aerodynamic Performance
,”
J. Propul. Power
,
27
(
5
), pp.
1008
1014
.
25.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip-Part I: Experimental Heat Transfer Results and CFD Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052506
.
26.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip-Part II: Analysis of Aerothermal Interaction Physics
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052507
.
27.
Ye
,
M.
,
He
,
K.
, and
Yan
,
X.
,
2019
, “
Influence of Wear Damages on Aerodynamic and Heat Transfer Performance in Squealer Tip Gap
,”
Appl. Therm. Eng.
,
159
, p.
113976
.
28.
Ye
,
M.
,
He
,
K.
, and
Yan
,
X.
,
2020
, “
Investigations of Heat Transfer and Film Cooling Effect on a Worn Squealer Tip
,” ASME Paper No. GT2020-14835.
29.
Yan
,
X.
,
Ye
,
M.
, and
He
,
K.
,
2020
, “
Investigations Into Heat Transfer and Aerodynamic Performance of a Worn Squealer Tipped Turbine Stage
,”
ASME J. Turbomach.
,
142
(
9
), p.
091012
.
30.
Montomoli
,
F.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2011
, “
Geometrical Uncertainty in Turbomachinery: Tip Gap and Fillet Radius
,”
Comput. Fluids
,
46
(
1
), pp.
362
368
.
31.
Krishnababu
,
S. K.
,
Newton
,
P. J.
,
Dawes
,
W. N.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2007
, “
Aero-Thermal Investigations of Tip Leakage Flow in Axial Flow Turbines Part II – Effect of Relative Casing Motion
,” ASME Paper No. GT2007-27957.
32.
Zhou
,
C.
,
Hodson
,
H.
,
Tibbott
,
I.
, and
Stokes
,
M.
,
2012
, “
Effects of Endwall Motion on the Aero-Thermal Performance of a Winglet Tip in a HP Turbine
,”
ASME J. Turbomach.
,
134
(
6
), p.
061036
.
33.
Zhu
,
D.
,
Zhang
,
Q.
,
Lu
,
S.
, and
Teng
,
J.
,
2020
, “
Relative Casing Motion Effect On Squealer Tip Cooling Performance at Tight Tip Clearance
,” ASME Journal of Thermal Science and Engineering Applications, Paper No. TSEA-19-1627.
34.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
Ireland
,
P. T.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
,
2012
, “
Blade Tip Heat Transfer and Aerodynamics in a Large Scale Turbine Cascade with Moving Endwall
,”
ASME J. Turbomach.
,
134
(
2
), p.
021020
.
35.
Srinivasan
,
V.
, and
Goldstein
,
R. J.
,
2003
, “
Effect of Endwall Motion on Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
125
(
2
), pp.
267
273
.
36.
Jeong
,
J. Y.
,
Kim
,
W.
,
Kwak
,
J. S.
, and
Park
,
J. S.
,
2019
, “
Heat Transfer Coefficient and Film Cooling Effectiveness on the Partial Cavity Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
141
(
7
), p.
071007
.
37.
Lu
,
S.
,
Zhang
,
Q.
, and
He
,
L.
,
2020
, “
A High-Speed Disk Rotor Rig Design for Tip Aerothermal Research
,” ASME Paper No. GT2020-14624.
38.
Tamunobere
,
O.
, and
Acharya
,
S.
,
2016
, “
Turbine Blade Tip Film Cooling with Blade Rotation: Part I-Tip and Pressure Side Coolant Injection
,”
ASME J. Turbomach.
,
138
(
9
), p.
091002
.
39.
Cernat
,
B. C.
,
Pátý
,
M.
,
Maesschalck
,
C. D.
, and
Lavagnoli
,
S.
,
2019
, “
Experimental and Numerical Investigation of Optimized Blade Tip Shapes-Part I: Turbine Rainbow Rotor Testing and Numerical Methods
,”
ASME J. Turbomach.
,
141
(
1
), p.
011006
.
40.
Rezasoltani
,
M.
,
Lu
,
K.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2015
, “
A Combined Experimental and Numerical Study of the Turbine Blade Tip Film Cooling Effectiveness Under Rotation Condition
,”
ASME J. Turbomach.
,
137
(
5
), p.
051009
.
41.
Cernat
,
B.
, and
Lavagnoli
,
S.
,
2020
, “
Experimental Investigation of Tip Design Effects on the Unsteady Aerodynamics and Heat Transfer of a High Speed Turbine
,” ASME Paper No. GT2020-15159.
42.
Kelly
,
R.
,
Jemcov
,
A.
,
Cameron
,
J. D.
,
Morris
,
S. C.
,
Coffman
,
J.
, and
Malak
,
M.
,
2017
, “
Very Large Eddy Simulation (VLES) of a Squealer Tipped Axial Turbine Stage
,” ASME Paper No. GT2017-64979.
43.
Ledezma
,
G. A.
,
Allen
,
J.
, and
Bunker
,
R. S.
,
2013
, “
An Experimental and Numerical Investigation into the Effects of Squealer Blade Tip Modifications on Aerodynamic Performance
,” ASME Paper No. TBTS2013-2004.
44.
Yan
,
X.
,
Huang
,
Y.
, and
He
,
K.
,
2018
, “
Effect of Ejection Angle and Blowing Ratio on Heat Transfer and Film Cooling Effect on a Winglet Tip
,”
Int. J. Heat Mass Transfer
,
125
(
2018
), pp.
357
374
.
45.
Yan
,
X.
,
Huang
,
Y.
, and
He
,
K.
,
2017
, “
Investigations Into Heat Transfer and Film Cooling Effect on a Squealer-Winglet Blade Tip
,”
Int. J. Heat Mass Transfer
,
115
, pp.
955
978
.
46.
Yan
,
X.
,
Huang
,
Y.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z.
,
2016
, “
Numerical Investigations Into the Effect of Squealer-Winglet Blade Tip Modifications on Aerodynamic and Heat Transfer Performance
,”
Int. J. Heat Mass Transfer
,
103
, pp.
242
253
.
47.
Zhou
,
C.
, and
Zhong
,
F.
,
2017
, “
A Novel Suction-Side Winglet Design Philosophy for High Pressure Turbine Rotor Tips
,”
ASME J. Turbomach.
,
139
(
11
), p.
111002
.
48.
Zhou
,
K.
, and
Zhou
,
C.
,
2020
, “
Aerodynamic Effects of an Incoming Vortex on Turbines with Different Tip Geometries
,” ASME Paper No. GT2020-14276.
49.
Cheon
,
J. H.
, and
Lee
,
S. W.
,
2015
, “
Tip Leakage Aerodynamic Over the Cavity Squealer Tip Equipped with Full Coverage Winglets in a Turbine Cascade
,”
Int. J. Heat Fluid Flow
,
56
, pp.
60
70
.
50.
Joo
,
J. S.
, and
Lee
,
S. W.
,
2017
, “
Heat/Mass Transfer Over the Cavity Squealer Tip Equipped with a Full Coverage Winglet in a Turbine Cascade: Part 1-Data on the Winglet Top Surface
,”
Int. J. Heat Fluid Flow
,
108
, pp.
1255
1263
.
51.
Lee
,
S. W.
, and
Joo
,
J. S.
,
2017
, “
Heat/Mass Transfer Over the Cavity Squealer Tip Equipped With a Full Coverage Winglet in a Turbine Cascade: Part 2-Data on the Cavity Floor
,”
Int. J. Heat Fluid Flow
,
108
, pp.
1264
1272
.
52.
Coull
,
J. D.
,
Atkins
,
N. R.
, and
Hodson
,
H. P.
,
2014
, “
High Efficiency Cavity Winglets for High Pressure Turbines
,” ASME Paper No. GT2014-25261.
53.
Zhong
,
F.
, and
Zhou
,
C.
,
2017
, “
Effects of Tip Gap Size on the Aerodynamic Performance of Cavity-Winglet Tip in a Turbine Cascade
,”
ASME J. Turbomach.
,
139
(
10
), p.
101009
.
54.
Kim
,
J. J.
,
Seo
,
W.
,
Bang
,
M.
,
Kim
,
S. H.
,
Choi
,
S. M.
, and
Cho
,
H. H.
,
2018
, “
Effect of Shelf Squealer Tip Configurations on Film Cooling Effectiveness
,” ASME Paper No. GT2018-75377.
55.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
,
Verstraete
,
T.
,
Olive
,
R.
, and
Picot
,
P.
,
2015
, “
Heterogeneous Optimization Strategies for Carved and Squealer-Like Turbine Blade Tips
,” ASME Paper No. GT2015-42983.
56.
Maral
,
H.
,
Senel
,
C. B.
, and
Kavurmacioglu
,
L.
,
2016
, “
A Parametric and Computational Aerothermal Investigation of Squealer Tip Geometry in an Axial Turbine: A Parametric Approach Suitable for Future Advanced Tip Carving Optimizations
,” ASME Paper No. GT2016-58107.
57.
Zhou
,
Z. H.
,
Chen
,
S. W.
, and
Wang
,
S. T.
,
2018
, “
Aerodynamic Optimization of a Winglet-Cavity Tip in a High-Pressure Axial Turbine Cascade
,”
Proc. Inst. Mech. Eng., Part G: J. Aerospace Eng.
,
232
(
4
), pp.
649
663
.
58.
Caloni
,
S.
,
Shahpar
,
S.
, and
Coull
,
J. D.
,
2016
, “
Numerical Investigations of Different Tip Designs for Shroudless Turbine Blades
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
230
(
7
), pp.
709
720
.
59.
Maral
,
H.
,
Şenel
,
C. B.
,
Deveci
,
K.
,
Alpman
,
E.
,
Kavurmacıoğlu
,
L.
, and
Camci
,
C.
,
2020
, “
A Genetic Algorithm Based Multi-Objective Optimization of Squealer Tip Geometry in Axial Flow Turbines: A Constant Tip Gap Approach
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021402
.
60.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
61.
Speziale
,
C.
,
1998
, “
A Combined Large-Eddy Simulation and Time-Dependent RANS Capability for High-Speed Compressible Flows
,”
J. Sci. Comput.
,
13
(
3
), pp.
253
274
.
62.
Han
,
X. S.
, and
Krajnović
,
S.
,
2013
, “
Validation of a Novel Very Large Eddy Simulation Method for Simulation of Turbulent Separated Flow
,”
Int. J. Numerical Methods Fluids
,
73
(
5
), pp.
436
461
.
63.
Yan
,
X.
,
2020
, “
Very Large Eddy Simulation of Film Cooling Effectiveness on Trailing Edge Cutback
,” ASME Paper No. GT2020-15780.
64.
Speziale
,
C. G.
,
1997
, “
Turbulence Modeling for Time-Dependent RANS and VLES: A Review
,” AIAA Paper No. AIAA-97-2051.
65.
Zhang
,
H.
,
Bachman
,
C.
, and
Fasel
,
H.
,
2000
, “
Application of a New Methodology for Simulations of Complex Turbulent Flows
,” AIAA Paper No. AIAA-2000-2535.
66.
Stephens
,
D.
,
Sideroff
,
C.
, and
Jemcov
,
A.
,
2016
, “
A Two Equation VLES Turbulence Model with Near-Wall Delayed Behaviour
,”
7th Asia-Pacific International Symposium on Aerospace Technology
.
67.
Kobayashi
,
H.
,
Ham
,
F.
, and
Wu
,
X.
,
2008
, “
Application of a Local SGS Model Based on Coherent Structures to Complex Geometries
,”
Int. J. Heat Fluid Flow
,
29
(
3
), pp.
640
653
.
68.
Peltier
,
L. J.
, and
Zajaczkowski
,
F. J.
,
2001
, “Maintenance of the Near-Wall Cycle of Turbulence for Hybrid RANS/LES of Fully Developed Channel Flow,”
DNS/LES Progress and Challenges: 3rd AFOSR International Conference
,
C.
Liu
,
T.
Beutner
, and
L.
Sakell
, eds.,
Greyden Press
,
Arlington, TX
, pp.
829
834
.
69.
Sagaut
,
P.
,
Deck
,
S.
, and
Terracol
,
M.
,
2006
,
Multiscale and Multiresolution Approaches in Turbulence
,
Imperial College Press
,
London
.
70.
ANSYS
,
2007
,
ANSYS Fluent Theory Guide: Version 11.0
,
ANSYS
,
Canonsburg, PA
.
71.
Timko
,
L. P.
,
1990
, “
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
,” NASA Report No. NASA CR-168289.
72.
Li
,
H.
,
Bian
,
X.
,
Su
,
X.
, and
Yuan
,
X.
,
2019
, “
Flow Mechanism and Loss Analysis of Tip Leakage Flow With Delayed Detached Eddy Simulation
,” ASME Paper No. GT2019-90410.
73.
Hunt
,
J. C. R.
,
Wray
,
A.
, and
Moin
,
P.
,
1988
, “
Eddies, Stream, and Convergence Zones in Turbulent Flows
,”
J. Fluid Mech.
,
366
, pp.
87
108
.
74.
Brown
,
G. L.
, and
Roshko
,
A.
,
1974
, “
On Density Effects and Large Structure in Turbulent Mixing Layers
,”
J. Fluid Mech.
,
64
(
4
), pp.
775
816
.
75.
Park
,
J. S.
,
Lee
,
S. H.
,
Kwak
,
J. S.
,
Lee
,
W. S.
, and
Chung
,
J. T.
,
2013
, “
Measurement of Blade Tip Heat Transfer and Leakage Flow in a Turbine Cascade With a Multi-Cavity Squealer Tip
,” ASME Paper No. TBTS2013-2072.
76.
Andichamy
,
V. C.
,
Khokha
,
G. T.
, and
Camci
,
C.
,
2018
, “
An Experimental Study of Using Vortex Generators as Tip Leakage Flow Interrupters in an Axial Flow Turbine Stage
,” ASME Paper No. GT2018-76994.
You do not currently have access to this content.