Abstract

A misalignment between the combustor exit and the nozzle guide vane (NGV) platform commonly exists due to manufacturing tolerances and thermal transience. This study investigated, experimentally and computationally, the effect of the combustor-turbine misalignment on the heat transfer for an axisymmetric converging endwall with a jet purge cooling scheme at transonic conditions. The studies were conducted at engine-representative Maexit = 0.85, inlet turbulence intensity of 16%, and Reexit,Cax = 1.5 × 106. A film cooling blowing ratio of 2.5 (design condition) and 3.5 and an engine-representative density ratio of 1.95 were used in the study. Three various step misalignments, combustor exit being 4.9% span higher than turbine inlet (backward-facing), no step (baseline), and combustor exit being 4.9% span lower than turbine inlet (forward-facing), were tested to demonstrate the misalignment effect on endwall heat transfer. Results indicated that the step misalignment affects the cooling performance by altering the interaction between the coolant and the cavity vortex, horseshoe vortex, and passage vortex. At the design blowing ratio of 2.5, the backward-facing step leads to increased coolant dissipation, causing the coolant to be later dominated by the passage vortex and leading to poor cooling performance. Meanwhile, a forward-facing step induced more coolant lift-off. At the blowing ratio of 3.5, the additional momentum ensures that enough coolant enters the passage to form a stable boundary layer. Therefore, the step misalignment no longer has a first-order effect.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
2.
Herzig
,
H. Z.
,
Hansen
,
A. G.
, and
Costello
,
G. R.
,
1954
, “
A Visualization Study of Secondary Flows in Cascades
,”
National Advisory Committee for Aeronautics Technical Note 2947
.
3.
Jílek
,
J.
,
1986
, “
An Experimental Investigation of the Three-Dimensional Flow Within Large Scale Turbine Cascades
,”
Proceedings of the IGTI
,
Dusseldorf, Germany
,
June 8–12
,
ASME Paper No. 86-GT-170
.
4.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
,
110
(
4a
), pp.
862
869
.
5.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
J. Eng. Power
,
102
(
2
), pp.
257
267
.
6.
Oke
,
R. A.
, and
Simon
,
T. W.
,
2002
, “
Film Cooling Experiments With Flow Introduced Upstream of a First Stage Nozzle Guide Vane Through Slots of Various Geometries
,”
Proceedings of the IGTI, Amsterdam
,
The Netherlands
,
June 3–6
,
ASME Paper No. GT2002-30169
.
7.
Knost
,
D. G.
, and
Thole
,
K. A.
,
2005
, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First-Stage Vane
,”
ASME J. Turbomach.
,
127
(
2
), pp.
297
305
.
8.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
,
2011
, “
Effects of an Axisymmetric Contoured Endwall on a Nozzle Guide Vane: Convective Heat Transfer Measurements
,”
ASME J. Turbomach.
,
133
(
4
), p.
041008
.
9.
Oke
,
R.
,
Simon
,
T.
,
Shih
,
T.
,
Zhu
,
B.
,
Lin
,
Y. L.
, and
Chyu
,
M.
,
2001
, “
Measurements Over a Film-Cooled, Contoured Endwall With Various Coolant Injection Rates
,”
Proceedings of the IGTI
,
New Orleans, LA
,
June 4–7
,
ASME Paper No. 2001-GT-0140
.
10.
Papa
,
M.
,
Srinivasan
,
V.
, and
Goldstein
,
R. J.
,
2012
, “
Film Cooling Effect of Rotor-Stator Purge Flow on Endwall Heat/Mass Transfer
,”
ASME J. Turbomach.
,
134
(
4
), p.
041014
.
11.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2006
, “
Effect of Midpassage Gap, Endwall Misalignment, and Roughness on Endwall Film-Cooling
,”
ASME J. Turbomach.
,
128
(
1
), pp.
62
70
.
12.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2007
, “
Heat Transfer Measurements in a First-Stage Nozzle Cascade Having Endwall Contouring: Misalignment and Leakage Studies
,”
ASME J. Turbomach.
,
129
(
4
), pp.
782
790
.
13.
Luehr
,
L.
,
Sibold
,
R.
,
Mao
,
S.
,
Ng
,
W. F.
,
Li
,
Z.
,
Xu
,
H.
, and
Fox
,
M.
,
2019
, “
The Effect of Step Misalignment on Purge Flow Cooling of Nozzle Guide Vane at Transonic Conditions
,”
Proceedings of the IGTI
,
Phoenix, AZ
,
June 17–21
,
ASME Paper No. GT2019-91810
.
14.
Zhang
,
L.
, and
Moon
,
H. K.
,
2003
, “
Turbine Nozzle Endwall Inlet Film Cooling: The Effect of a Back-Facing Step
,”
Proceedings of the IGTI
,
Atlanta, GA
,
June 16–19
,
ASME Paper No. GT2003-38319
.
15.
Chung
,
H.
,
Hong
,
C. W.
,
Kim
,
S. H.
,
Cho
,
H. H.
, and
Moon
,
H. K.
,
2016
, “
Heat Transfer Measurement Near Endwall Region of First Stage Gas Turbine Nozzle Having Platform Misalignment at Combustor-Turbine Interface
,”
Int. Commun. Heat Mass Transfer
,
78
, pp.
101
111
.
16.
Du
,
K.
, and
Li
,
J.
,
2016
, “
Numerical Study on the Effects of Slot Injection Configuration and Endwall Alignment Mode on the Film Cooling Performance of Vane Endwall
,”
Int. J. Heat Mass Transfer
,
98
, pp.
768
777
.
17.
Hada
,
S.
, and
Thole
,
K. A.
,
2011
, “
Computational Study of a Midpassage Gap and Upstream Slot on Vane Endwall Film-Cooling
,”
ASME J. Turbomach.
,
133
(
1
), p.
011024
.
18.
Nix
,
A. C.
,
Smith
,
A. C.
,
Diller
,
T. E.
,
Ng
,
W. F.
, and
Thole
,
K. A.
,
2002
, “
High Intensity, Large Length-Scale Freestream Turbulence Generation in a Transonic Cascade
,”
Proceedings of the IGTI
,
Amsterdam, The Netherlands
,
June 3–6
,
ASME Paper No. GT2002-30523
.
19.
Cook
,
W. J.
, and
Felderman
,
E. J.
,
1966
, “
Reduction of Data From Thin-Film Heat-Transfer Gages—A Concise Numerical Technique
,”
AIAA J.
,
4
(
3
), pp.
561
562
.
20.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.
21.
Mick
,
W. J.
, and
Mayle
,
R. E.
,
1988
, “
Stagnation Film Cooling and Heat Transfer, Including Its Effect Within the Hole Pattern
,”
ASME J. Turbomach.
,
110
(
1
), pp.
66
72
.
22.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
23.
Li
,
Z.
,
Liu
,
L.
,
Li
,
J.
,
Sibold
,
R. A.
,
Ng
,
W. F.
,
Xu
,
H.
, and
Fox
,
M.
,
2018
, “
Effects of Upstream Step Geometry on Axisymmetric Converging Vane Endwall Secondary Flow and Heat Transfer at Transonic Conditions
,”
ASME. J. Turbomach.
,
140
(
12
), p.
121008
.
24.
Mayo
,
D. E.
,
Arisi
,
A.
,
Ng
,
W. F.
,
Li
,
Z.
,
Li
,
J.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2017
, “
Effect of Combustor-Turbine Platform Misalignment on the Aerodynamics and Heat Transfer of an Axisymmetric Converging Vane Endwall at Transonic Conditions
,”
Proceedings of the IGTI
,
Charlotte, NC
,
June 26–30
,
ASME Paper No. GT2017-65091
.
25.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in The Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
248
257
.
26.
Yan
,
J.
,
Gregory-Smith
,
D. G.
, and
Walker
,
P. J.
,
1999
, “
Secondary Flow Reduction in a Nozzle Guide Vane Cascade by Non-axisymmetric End-Wall Profiling
,”
Proceedings of the IGTI
,
Indianapolis, IN
,
June 7–10
,
ASME Paper No. 99-GT-339
.
27.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
.
28.
Biesinger
,
T. E.
, and
Gregory-Smith
,
D. G.
,
1993
, “
Reduction in Secondary Flows and Losses in a Turbine Cascade by Upstream Boundary Layer Blowing
,”
Proceedings of the IGTI
,
Cincinnati, OH
,
May 24–27
,
ASME Paper No. 93-GT-114
.
You do not currently have access to this content.