Abstract

This study features a rotating, blade-shaped, two-pass cooling channel with a variable aspect ratio (AR). Internal cooling passages of modern gas turbine blades closely follow the shape and contour of the airfoils. Therefore, the cross section and the orientation with respect to rotation varies for each cooling channel. The effect of passage orientation on the heat transfer and pressure loss is investigated by comparing to a planar channel design with a similar geometry. Following the blade cross section, the first pass of the serpentine channel is angled at 50 deg from the direction of rotation while the second pass has an orientation angle of 105 deg. The coolant flows radially outward in the first passage with an AR = 4:1. After a 180-deg tip turn, the coolant travels radially inward into the second passage with AR = 2:1. The copper plate method is applied to obtain the regionally averaged heat transfer coefficients on all the interior walls of the cooling channel. In addition to the smooth surface case, 45 deg angled ribs with a profiled cross section are also placed on the leading and trailing surfaces in both the passages. The ribs are placed such that P/e = 10 and e/H = 0.16. The Reynolds number varies from 10,000 to 45,000 in the first passage and 16,000 to 73,000 in the second passage. The rotational speed ranges from 0 to 400 rpm, which corresponds to maximum rotation numbers of 0.38 and 0.15 in the first and second passes, respectively. The blade-shaped feature affects the heat transfer and pressure loss in the cooling channels. In the second passage, the heat transfer on the outer wall and trailing surface is higher than the inner wall and leading surface due to flow impingement and the swirling motion induced by the blade-shaped tip turn. The rotational effect on the heat transfer and pressure loss is lower in the blade-shaped design than the planar design due to the feature of angled rotation. The tip wall heat transfer is significantly enhanced by rotation in this study. The overall heat transfer and pressure loss in this study is higher than the planar geometry due to the blade-shaped feature. The heat transfer and pressure loss characteristics from this study provide important information for the gas turbine blade internal cooling designs.

References

1.
Han
,
J. C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
11
), p.
113001
.
2.
Han
,
J. C.
,
1984
, “
Heat Transfer and Friction in Channels With Two Opposite Rib-Roughned Walls
,”
ASME J. Heat Transfer-Trans. ASME
,
106
(
4
), pp.
774
781
.
3.
Han
,
J. C.
,
Park
,
J. S.
, and
Ibrahim
,
M. Y.
,
1986
, “
Measurement of Heat Transfer and Pressure Drop in Rectangular Channels With Turbulence Promoters
,”
NASA Contractor Report Number NASA-CR-4015
.
4.
Han
,
J. C.
,
1988
, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators
,”
ASME J. Heat Transfer-Trans. ASME
,
110
(
2
), pp.
321
328
.
5.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
.
6.
Park
,
J. S.
,
Han
,
J. C.
,
Huang
,
Y.
,
Ou
,
S.
, and
Boyle
,
R. J.
,
1992
, “
Heat Transfer Performance Comparisons of Five Different Rectangular Channels With Parallel Angled Ribs
,”
Int. J. Heat Mass Transfer
,
35
(
11
), pp.
2891
2903
.
7.
Korotky
,
G. J.
, and
Taslim
,
M. E.
,
1998
, “
Rib Heat Transfer Coefficient Measurement in a Rib- Roughened Square Passage
,”
ASME J. Turbomach.
,
120
(
2
), pp.
376
385
.
8.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Selected Model Orientations for Smooth or Skewed Trip Walls
,”
ASME J. Turbomach.
,
116
(
4
), pp.
738
744
.
9.
Han
,
J. C.
,
Zhang
,
Y. M.
, and
Kalkuehler
,
K.
,
1993
, “
Uneven Wall Temperature Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With Smooth Walls
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
4
), pp.
912
920
.
10.
Bons
,
J. P.
, and
Kerrebrock
,
J. L.
,
1999
, “
Complementary Velocity and Heat Transfer Measurements in a Rotating Cooling Passage with Smooth Walls
,”
ASME J. Turbomach.
,
121
(
4
), pp.
651
662
.
11.
Taslim
,
M. E.
,
Bondi
,
L. A.
, and
Kercher
,
D. M.
,
1991
, “
An Experimental Investigation of Heat Transfer in an Orthogonally Rotating Channel Roughened With 45 Deg Criss-Cross Ribs on Two Opposite Walls
,”
ASME J. Turbomach.
,
113
(
3
), pp.
346
353
.
12.
Wright
,
L. M.
,
Fu
,
W.-L.
, and
Han
,
J.-C.
,
2004
, “
Thermal Performance of Angled, V-Shaped, and W-Shaped Rib Turbulators in Rotating Rectangular Cooling Channels (AR = 4:1)
,”
ASME J. Turbomach.
,
126
(
4
), pp.
604
614
.
13.
Fu
,
W.-L.
,
Wright
,
L. M.
, and
Han
,
J.-C.
,
2005
, “
Heat Transfer in Two-Pass Rotating Rectangular Channels (AR = 1:2 and AR = 1:4) With 45 Deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
127
(
1
), pp.
164
174
.
14.
Lei
,
J.
,
Han
,
J.-C.
, and
Huh
,
M.
,
2012
, “
Effect of Rib Spacing on Heat Transfer in a Two Pass Rectangular Channel (AR = 2:1) at High Rotation Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
9
), p.
091901
.
15.
Huh
,
M.
,
Lei
,
J.
, and
Han
,
J. C.
,
2012
, “
Influence of Channel Orientation on Heat Transfer in a Two-Pass Smooth and Ribbed Rectangular Channel (AR = 2:1) Under Large Rotation Numbers
,”
ASME J. Turbomach.
,
134
(
1
), p.
011022
.
16.
Metzger
,
D. E.
,
Plevich
,
C. V.
, and
Fan
,
C. S.
,
1984
, “
Pressure Loss Through Sharp 180 Deg Turns in Smooth Rectangular Channels
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
677
681
.
17.
Metzger
,
D. E.
, and
Sahm
,
M. K.
,
1986
, “
Heat Transfer Around Sharp 180-deg Turns in Smooth Rectangular Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
108
(
3
), pp.
500
506
.
18.
Han
,
J. C.
,
Chandra
,
P. R.
, and
Lau
,
S. C.
,
1988
, “
Local Heat/Mass Transfer Distributions Around Sharp 180 Deg Turns in Two-Pass Smooth and Rib-Roughened Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
110
(
1
), pp.
91
98
.
19.
Cheah
,
S. C.
,
Iacovides
,
H.
,
Jackson
,
D. C.
,
Ji
,
H.
, and
Launder
,
B. E.
,
1996
, “
LDA Investigation of the Flow Development Through Rotating U-Ducts
,”
ASME J. Turbomach.
,
118
(
3
), pp.
590
596
.
20.
Schabacker
,
J.
,
Bölcs
,
A.
, and
Johnson
,
B. V.
,
1998
, “
PIV Investigation of the Flow Characteristics in an Internal Coolant Passage With Two Ducts Connected by a Sharp 180° Bend
,”
ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
,
Stockholm, Sweden
,
June 2–5
, p.
V004T009A094
, ASME Paper No. 98-GT-544.
21.
Liou
,
T. M.
, and
Chen
,
C. C.
,
1999
, “
Heat Transfer in a Rotating Two-Pass Smooth Passage With a 180° Rectangular Turn
,”
Int. J. Heat Mass Transfer
,
42
(
2
), pp.
231
247
.
22.
Chen
,
A. F.
,
Shiau
,
C. C.
,
Han
,
J. C.
, and
Krewinkel
,
R.
,
2019
, “
Heat Transfer in a Rotating Two-Pass Rectangular Channel Featuring a Converging Tip Turn With Various 45 deg Rib Coverage Designs
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061015
.
23.
Sahin
,
I.
,
Chen
,
A. F.
,
Shiau
,
C. C.
,
Han
,
J. C.
, and
Krewinkel
,
R.
,
2019
, “
Effect of 45-deg Rib Orientations on Heat Transfer in a Rotating Two-Pass Channel with Aspect Ratio From 4:1 to 2:1
,” ASME Paper No. GT2019-90099.
24.
Chen
,
I. L.
,
Sahin
,
I.
,
Wright
,
L. M.
,
Han
,
J. C.
, and
Krewinkel
,
R.
,
2020
, “
Heat Transfer in a Rotating, Two-Pass, Variable Aspect Ratio Cooling Channel with Profiled V-Shaped Ribs
,” ASME Paper No. GT2020-16216.
25.
Schüler
,
M.
,
Neumann
,
S. O.
, and
Weigand
,
B.
,
2009
, “
Experimental Investigations of Pressure Loss and Heat Transfer in a 180° bend of a Ribbed two-Pass Internal Cooling Channel with Engine-Similar Cross-Sections
,”
J. Power Energy
,
223
(
6
), pp.
709
719
.
26.
Schüler
,
M.
,
Dreher
,
H. M.
,
Neumann
,
S. O.
,
Weigand
,
B.
, and
Elfert
,
M.
,
2011
, “
Numerical Predictions of the Effect of Rotation on Fluid Flow and Heat Transfer in an Engine-Similar Two-Pass Internal Cooling Channel With Smooth and Ribbed Walls
,”
ASME J. Turbomach.
,
134
(
2
), p.
021021
.
27.
Eifel
,
M.
,
Caspary
,
V.
,
Hönen
,
H.
, and
Jeschke
,
P.
,
2010
, “
Experimental and Numerical Analysis of Gas Turbine Blades With Different Internal Cooling Geometries
,”
ASME J. Turbomach.
,
133
(
1
), p.
011018
.
28.
Ekkad
,
S. V.
,
LeBlanc
,
C.
,
Lambert
,
T.
, and
Rajendran
,
V.
,
2011
, “
Detailed Heat Transfer Distributions in Engine Similar Cooling Channels for a Turbine Rotor Blade with Different Rib Orientations
,” ASME Paper No. GT2011-45254.
29.
Shiau
,
C.-C.
,
Chen
,
A. F.
,
Han
,
J.-C.
, and
Krewinkel
,
R.
,
2020
, “
Detailed Heat Transfer Coefficient Measurements on a Scaled Realistic Turbine Blade Internal Cooling System
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031015
.
30.
Rallabandi
,
A.
,
Lei
,
J.
,
Han
,
J.-C.
,
Azad
,
S.
, and
Lee
,
C.-P.
,
2014
, “
Heat Transfer Measurements in Rotating Blade–Shape Serpentine Coolant Passage With Ribbed Walls at High Reynolds Numbers
,”
ASME J. Turbomach.
,
136
(
9
), p.
091004
.
31.
Yang
,
S.-F.
,
Han
,
J.-C.
,
Azad
,
S.
, and
Lee
,
C.-P.
,
2015
, “
Heat Transfer in Rotating Serpentine Coolant Passage With Ribbed Walls at Low Mach Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011013
.
32.
Wright
,
L. M.
,
Yang
,
S.-F.
,
Wu
,
H.-W.
,
Han
,
J.-C.
,
Lee
,
C.-P.
,
Azad
,
S.
, and
Um
,
J.
,
2020
, “
Heat Transfer in a Rotating, Blade-Shaped Serpentine Cooling Passage With Discrete Ribbed Walls at High Reynolds Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
1
), p.
012002
.
33.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.